Several physically inspired problems have been proven undecidable; examples are the spectral gap problem and the membership problem for quantum correlations. Most of these results rely on reductions from a handful of undecidable problems, such as the halting problem, the tiling problem, the Post correspondence problem or the matrix mortality problem. All these problems have a common property: they have an NP-hard bounded version. This work establishes a relation between undecidable unbounded problems and their bounded NP-hard versions. Specifically, we show that NP-hardness of a bounded version follows easily from the reduction of the unbounded problems. This leads to new and simpler proofs of the NP-hardness of bounded version of the Post correspondence problem, the matrix mortality problem, the positivity of matrix product operators, the reachability problem, the tiling problem, and the ground state energy problem. This work sheds light on the intractability of problems in theoretical physics and on the computational consequences of bounding a parameter.
Electoral control types are ways of trying to change the outcome of elections by altering aspects of their composition and structure [BTT92]. We say two compatible (i.e., having the same input types) control types that are about the same election system E form a collapsing pair if for every possible input (which typically consists of a candidate set, a vote set, a focus candidate, and sometimes other parameters related to the nature of the attempted alteration), either both or neither of the attempted attacks can be successfully carried out [HHM20]. For each of the seven general (i.e., holding for all election systems) electoral control type collapsing pairs found by Hemaspaandra, Hemaspaandra, and Menton [HHM20] and for each of the additional electoral control type collapsing pairs of Carleton et al. [CCH+ 22] for veto and approval (and many other election systems in light of that paper's Theorems 3.6 and 3.9), both members of the collapsing pair have the same complexity since as sets they are the same set. However, having the same complexity (as sets) is not enough to guarantee that as search problems they have the same complexity. In this paper, we explore the relationships between the search versions of collapsing pairs. For each of the collapsing pairs of Hemaspaandra, Hemaspaandra, and Menton [HHM20] and Carleton et al. [CCH+ 22], we prove that the pair's members' search-version complexities are polynomially related (given access, for cases when the winner problem itself is not in polynomial time, to an oracle for the winner problem). Beyond that, we give efficient reductions that from a solution to one compute a solution to the other. For the concrete systems plurality, veto, and approval, we completely determine which of their (due to our results) polynomially-related collapsing search-problem pairs are polynomial-time computable and which are NP-hard.
We explore the features of two methods of stabilization, aggregation and supremizer methods, for reduced-order modeling of parametrized optimal control problems. In both methods, the reduced basis spaces are augmented to guarantee stability. For the aggregation method, the reduced basis approximation spaces for the state and adjoint variables are augmented in such a way that the spaces are identical. For the supremizer method, the reduced basis approximation space for the state-control product space is augmented with the solutions of a supremizer equation. We implement both of these methods for solving several parametrized control problems and assess their performance. Results indicate that the number of reduced basis vectors needed to approximate the solution space to some tolerance with the supremizer method is much larger, possibly double, that for aggregation. There are also some cases where the supremizer method fails to produce a converged solution. We present results to compare the accuracy, efficiency, and computational costs associated with both methods of stabilization which suggest that stabilization by aggregation is a superior stabilization method for control problems.
In many board games and other abstract games, patterns have been used as features that can guide automated game-playing agents. Such patterns or features often represent particular configurations of pieces, empty positions, etc., which may be relevant for a game's strategies. Their use has been particularly prevalent in the game of Go, but also many other games used as benchmarks for AI research. In this paper, we formulate a design and efficient implementation of spatial state-action features for general games. These are patterns that can be trained to incentivise or disincentivise actions based on whether or not they match variables of the state in a local area around action variables. We provide extensive details on several design and implementation choices, with a primary focus on achieving a high degree of generality to support a wide variety of different games using different board geometries or other graphs. Secondly, we propose an efficient approach for evaluating active features for any given set of features. In this approach, we take inspiration from heuristics used in problems such as SAT to optimise the order in which parts of patterns are matched and prune unnecessary evaluations. This approach is defined for a highly general and abstract description of the problem -- phrased as optimising the order in which propositions of formulas in disjunctive normal form are evaluated -- and may therefore also be of interest to other types of problems than board games. An empirical evaluation on 33 distinct games in the Ludii general game system demonstrates the efficiency of this approach in comparison to a naive baseline, as well as a baseline based on prefix trees, and demonstrates that the additional efficiency significantly improves the playing strength of agents using the features to guide search.
We describe a practical algorithm for computing normal forms for semigroups and monoids with finite presentations satisfying so-called small overlap conditions. Small overlap conditions are natural conditions on the relations in a presentation, which were introduced by J. H. Remmers and subsequently studied extensively by M. Kambites. Presentations satisfying these conditions are ubiquitous; Kambites showed that a randomly chosen finite presentation satisfies the $C(4)$ condition with probability tending to 1 as the sum of the lengths of relation words tends to infinity. Kambites also showed that several key problems for finitely presented semigroups and monoids are tractable in $C(4)$ monoids: the word problem is solvable in $O(\min\{|u|, |v|\})$ time in the size of the input words $u$ and $v$; the uniform word problem for $\langle A|R\rangle$ is solvable in $O(N ^ 2 \min\{|u|, |v|\})$ where $N$ is the sum of the lengths of the words in $R$; and a normal form for any given word $u$ can be found in $O(|u|)$ time. Although Kambites' algorithm for solving the word problem in $C(4)$ monoids is highly practical, it appears that the coefficients in the linear time algorithm for computing normal forms are too large in practice. In this paper, we present an algorithm for computing normal forms in $C(4)$ monoids that has time complexity $O(|u| ^ 2)$ for input word $u$, but where the coefficients are sufficiently small to allow for practical computation. Additionally, we show that the uniform word problem for small overlap monoids can be solved in $O(N \min\{|u|, |v|\})$ time.
This chapter discusses the development and implementation of algorithms based on Equation-Free/Dynamic Data Driven Applications Systems (EF/DDDAS) protocols for the computer-assisted study of the bifurcation structure of complex dynamical systems, such as those that arise in biology (neuronal networks, cell populations), multiscale systems in physics, chemistry and engineering, and system modeling in the social sciences. An illustrative example demonstrates the experimental realization of a chain of granular particles (a so-called engineered granular chain). In particular, the focus is on the detection/stability analysis of time-periodic, spatially localized structures referred to as "dark breathers". Results in this chapter highlight, both experimentally and numerically, that the number of breathers can be controlled by varying the frequency as well as the amplitude of an "out of phase" actuation, and that a "snaking" structure in the bifurcation diagram (computed through standard, model-based numerical methods for dynamical systems) is also recovered through the EF/DDDAS methods operating on a black-box simulator. The EF/DDDAS protocols presented here are, therefore, a step towards general purpose protocols for performing detailed bifurcation analyses directly on laboratory experiments, not only on their mathematical models, but also on measured data.
We design and analyze an iterative two-grid algorithm for the finite element discretizations of strongly nonlinear elliptic boundary value problems in this paper. We propose an iterative two-grid algorithm, in which a nonlinear problem is first solved on the coarse space, and then a symmetric positive definite problem is solved on the fine space. The innovation of this paper lies in the establishment of a first convergence analysis, which requires simultaneous estimation of four interconnected error estimates. We also present some numerical experiments to confirm the efficiency of the proposed algorithm.
SARSA, a classical on-policy control algorithm for reinforcement learning, is known to chatter when combined with linear function approximation: SARSA does not diverge but oscillates in a bounded region. However, little is known about how fast SARSA converges to that region and how large the region is. In this paper, we make progress towards this open problem by showing the convergence rate of projected SARSA to a bounded region. Importantly, the region is much smaller than the region that we project into, provided that the magnitude of the reward is not too large. Existing works regarding the convergence of linear SARSA to a fixed point all require the Lipschitz constant of SARSA's policy improvement operator to be sufficiently small; our analysis instead applies to arbitrary Lipschitz constants and thus characterizes the behavior of linear SARSA for a new regime.
Courcelle's theorem and its adaptations to cliquewidth have shaped the field of exact parameterized algorithms and are widely considered the archetype of algorithmic meta-theorems. In the past decade, there has been growing interest in developing parameterized approximation algorithms for problems which are not captured by Courcelle's theorem and, in particular, are considered not fixed-parameter tractable under the associated widths. We develop a generalization of Courcelle's theorem that yields efficient approximation schemes for any problem that can be captured by an expanded logic we call Blocked CMSO, capable of making logical statements about the sizes of set variables via so-called weight comparisons. The logic controls weight comparisons via the quantifier-alternation depth of the involved variables, allowing full comparisons for zero-alternation variables and limited comparisons for one-alternation variables. We show that the developed framework threads the very needle of tractability: on one hand it can describe a broad range of approximable problems, while on the other hand we show that the restrictions of our logic cannot be relaxed under well-established complexity assumptions. The running time of our approximation scheme is polynomial in $1/\varepsilon$, allowing us to fully interpolate between faster approximate algorithms and slower exact algorithms. This provides a unified framework to explain the tractability landscape of graph problems parameterized by treewidth and cliquewidth, as well as classical non-graph problems such as Subset Sum and Knapsack.
A framework consists of an undirected graph $G$ and a matroid $M$ whose elements correspond to the vertices of $G$. Recently, Fomin et al. [SODA 2023] and Eiben et al. [ArXiV 2023] developed parameterized algorithms for computing paths of rank $k$ in frameworks. More precisely, for vertices $s$ and $t$ of $G$, and an integer $k$, they gave FPT algorithms parameterized by $k$ deciding whether there is an $(s,t)$-path in $G$ whose vertex set contains a subset of elements of $M$ of rank $k$. These algorithms are based on Schwartz-Zippel lemma for polynomial identity testing and thus are randomized, and therefore the existence of a deterministic FPT algorithm for this problem remains open. We present the first deterministic FPT algorithm that solves the problem in frameworks whose underlying graph $G$ is planar. While the running time of our algorithm is worse than the running times of the recent randomized algorithms, our algorithm works on more general classes of matroids. In particular, this is the first FPT algorithm for the case when matroid $M$ is represented over rationals. Our main technical contribution is the nontrivial adaptation of the classic irrelevant vertex technique to frameworks to reduce the given instance to one of bounded treewidth. This allows us to employ the toolbox of representative sets to design a dynamic programming procedure solving the problem efficiently on instances of bounded treewidth.
An old problem in multivariate statistics is that linear Gaussian models are often unidentifiable, i.e. some parameters cannot be uniquely estimated. In factor (component) analysis, an orthogonal rotation of the factors is unidentifiable, while in linear regression, the direction of effect cannot be identified. For such linear models, non-Gaussianity of the (latent) variables has been shown to provide identifiability. In the case of factor analysis, this leads to independent component analysis, while in the case of the direction of effect, non-Gaussian versions of structural equation modelling solve the problem. More recently, we have shown how even general nonparametric nonlinear versions of such models can be estimated. Non-Gaussianity is not enough in this case, but assuming we have time series, or that the distributions are suitably modulated by some observed auxiliary variables, the models are identifiable. This paper reviews the identifiability theory for the linear and nonlinear cases, considering both factor analytic models and structural equation models.