We study the convergence of specific inexact alternating projections for two non-convex sets in a Euclidean space. The $\sigma$-quasioptimal metric projection ($\sigma \geq 1$) of a point $x$ onto a set $A$ consists of points in $A$ the distance to which is at most $\sigma$ times larger than the minimal distance $\mathrm{dist}(x,A)$. We prove that quasioptimal alternating projections, when one or both projections are quasioptimal, converge locally and linearly under the usual regularity assumptions on the two sets and their intersection. The theory is motivated by the successful application of alternating projections to low-rank matrix and tensor approximation. We focus on two problems -- nonnegative low-rank approximation and low-rank approximation in the maximum norm -- and develop fast alternating-projection algorithms for matrices and tensor trains based on cross approximation and acceleration techniques. The numerical experiments confirm that the proposed methods are efficient and suggest that they can be used to regularise various low-rank computational routines.
In this paper we study the orbit closure problem for a reductive group $G\subseteq GL(X)$ acting on a finite dimensional vector space $V$ over $\C$. We assume that the center of $GL(X)$ lies within $G$ and acts on $V$ through a fixed non-trivial character. We study points $y,z\in V$ where (i) $z$ is obtained as the leading term of the action of a 1-parameter subgroup $\lambda (t)\subseteq G$ on $y$, and (ii) $y$ and $z$ have large distinctive stabilizers $K,H \subseteq G$. Let $O(z)$ (resp. $O(y)$) denote the $G$-orbits of $z$ (resp. $y$), and $\overline{O(z)}$ (resp. $\overline{O(y)}$) their closures, then (i) implies that $z\in \overline{O(y)}$. We address the question: under what conditions can (i) and (ii) be simultaneously satisfied, i.e, there exists a 1-PS $\lambda \subseteq G$ for which $z$ is observed as a limit of $y$. Using $\lambda$, we develop a leading term analysis which applies to $V$ as well as to ${\cal G}= Lie(G)$ the Lie algebra of $G$ and its subalgebras ${\cal K}$ and ${\cal H}$, the Lie algebras of $K$ and $H$ respectively. Through this we construct the Lie algebra $\hat{\cal K} \subseteq {\cal H}$ which connects $y$ and $z$ through their Lie algebras. We develop the properties of $\hat{\cal K}$ and relate it to the action of ${\cal H}$ on $\overline{N}=V/T_z O(z)$, the normal slice to the orbit $O(z)$. We examine the case of {\em alignment} when a semisimple element belongs to both ${\cal H}$ and ${\cal K}$, and the conditions for the same. We illustrate some consequences of alignment. Next, we examine the possibility of {\em intermediate $G$-varieties} $W$ which lie between the orbit closures of $z$ and $y$, i.e. $\overline{O(z)} \subsetneq W \subsetneq O(y)$. These have a direct bearing on representation theoretic as well as geometric properties which connect $z$ and $y$.
In 1986, Flagg and Friedman \cite{ff} gave an elegant alternative proof of the faithfulness of G\"{o}del translation $(\cdot)^\Box$ of Heyting arithmetic $\bf HA$ to Shapiro's epistemic arithmetic $\bf EA$. In \S 2, we shall prove the faithfulness of $(\cdot)^\Box$ without using stability, by introducing another translation from an epistemic system to corresponding intuitionistic system which we shall call \it the modified Rasiowa-Sikorski translation\rm . That is, this introduction of the new translation simplifies the original Flagg and Friedman's proof. In \S 3, we shall give some applications of the modified one for the disjunction property ($\mathsf{DP}$) and the numerical existence property ($\mathsf{NEP}$) of Heyting arithmetic. In \S 4, we shall show that epistemic Markov's rule $\mathsf{EMR}$ in $\bf EA$ is proved via $\bf HA$. So $\bf EA$ $\vdash \mathsf{EMR}$ and $\bf HA$ $\vdash \mathsf{MR}$ are equivalent. In \S 5, we shall give some relations among the translations treated in the previous sections. In \S 6, we shall give an alternative proof of Glivenko's theorem. In \S 7, we shall propose several (modal-)epistemic versions of Markov's rule for Horsten's modal-epistemic arithmetic $\bf MEA$. And, as in \S 4, we shall study some meta-implications among those versions of Markov's rules in $\bf MEA$ and one in $\bf HA$. Friedman and Sheard gave a modal analogue $\mathsf{FS}$ (i.e. Theorem in \cite{fs}) of Friedman's theorem $\mathsf{F}$ (i.e. Theorem 1 in \cite {friedman}): \it Any recursively enumerable extension of $\bf HA$ which has $\mathsf{DP}$ also has $\mathsf{NPE}$\rm . In \S 8, we shall propose a modified version of \it Fundamental Conjecture \rm $\mathsf{FC}$ ($\mathsf{FS} \Longrightarrow \mathsf{F}$) proposed by the author as $\Delta_0$-Fundamental Conjecture. In \S 9, I shall give some discussions and my philosophy.
We introduce a general class of transport distances ${\rm WB}_{\Lambda}$ over the space of positive semi-definite matrix-valued Radon measures $\mathcal{M}(\Omega,\mathbb{S}_+^n)$, called the weighted Wasserstein-Bures distance. Such a distance is defined via a generalized Benamou-Brenier formulation with a weighted action functional and an abstract matricial continuity equation, which leads to a convex optimization problem. Some recently proposed models, including the Kantorovich-Bures distance and the Wasserstein-Fisher-Rao distance, can naturally fit into ours. We give a complete characterization of the minimizer and explore the topological and geometrical properties of the space $(\mathcal{M}(\Omega,\mathbb{S}_+^n),{\rm WB}_{\Lambda})$. In particular, we show that $(\mathcal{M}(\Omega,\mathbb{S}_+^n),{\rm WB}_{\Lambda})$ is a complete geodesic space and exhibits a conic structure.
The supersingular Endomorphism Ring problem is the following: given a supersingular elliptic curve, compute all of its endomorphisms. The presumed hardness of this problem is foundational for isogeny-based cryptography. The One Endomorphism problem only asks to find a single non-scalar endomorphism. We prove that these two problems are equivalent, under probabilistic polynomial time reductions. We prove a number of consequences. First, assuming the hardness of the endomorphism ring problem, the Charles--Goren--Lauter hash function is collision resistant, and the SQIsign identification protocol is sound. Second, the endomorphism ring problem is equivalent to the problem of computing arbitrary isogenies between supersingular elliptic curves, a result previously known only for isogenies of smooth degree. Third, there exists an unconditional probabilistic algorithm to solve the endomorphism ring problem in time O~(sqrt(p)), a result that previously required to assume the generalized Riemann hypothesis. To prove our main result, we introduce a flexible framework for the study of isogeny graphs with additional information. We prove a general and easy-to-use rapid mixing theorem. The proof of this result goes via an augmented Deuring correspondence and the Jacquet-Langlands correspondence.
We provide explicit convergence rates for Chernoff-type approximations of convex monotone semigroups which have the form $S(t)f=\lim_{n\to\infty}I(\frac{t}{n})^n f$ for bounded continuous functions $f$. Under suitable conditions on the one-step operators $I(t)$ regarding the time regularity and consistency of the approximation scheme, we obtain $\|S(t)f-I(\frac{t}{n})^n f\|_\infty\leq cn^{-\gamma}$ for bounded Lipschitz continuous functions $f$, where $c\geq 0$ and $\gamma>0$ are determined explicitly. Moreover, the mapping $t\mapsto S(t)f$ is H\"older continuous. These results are closely related to monotone approximation schemes for viscosity solutions but are obtained independently by following a recently developed semigroup approach to Hamilton-Jacobi-Bellman equations which uniquely characterizes semigroups via their $\Gamma$-generators. The different approach allows to consider convex rather than sublinear equations and the results can be extended to unbounded functions by modifying the norm with a suitable weight function. Furthermore, up to possibly different consistency errors for the operators $I(t)$, the upper and lower bound for the error between the semigroup and the iterated operators are symmetric. The abstract results are applied to Nisio semigroups and limit theorems for convex expectations.
The categorical Gini correlation, $\rho_g$, was proposed by Dang et al. to measure the dependence between a categorical variable, $Y$ , and a numerical variable, $X$. It has been shown that $\rho_g$ has more appealing properties than current existing dependence measurements. In this paper, we develop the jackknife empirical likelihood (JEL) method for $\rho_g$. Confidence intervals for the Gini correlation are constructed without estimating the asymptotic variance. Adjusted and weighted JEL are explored to improve the performance of the standard JEL. Simulation studies show that our methods are competitive to existing methods in terms of coverage accuracy and shortness of confidence intervals. The proposed methods are illustrated in an application on two real datasets.
We study the approximation of a square-integrable function from a finite number of evaluations on a random set of nodes according to a well-chosen distribution. This is particularly relevant when the function is assumed to belong to a reproducing kernel Hilbert space (RKHS). This work proposes to combine several natural finite-dimensional approximations based two possible probability distributions of nodes. These distributions are related to determinantal point processes, and use the kernel of the RKHS to favor RKHS-adapted regularity in the random design. While previous work on determinantal sampling relied on the RKHS norm, we prove mean-square guarantees in $L^2$ norm. We show that determinantal point processes and mixtures thereof can yield fast convergence rates. Our results also shed light on how the rate changes as more smoothness is assumed, a phenomenon known as superconvergence. Besides, determinantal sampling generalizes i.i.d. sampling from the Christoffel function which is standard in the literature. More importantly, determinantal sampling guarantees the so-called instance optimality property for a smaller number of function evaluations than i.i.d. sampling.
A generalized unbalanced optimal transport distance ${\rm WB}_{\Lambda}$ on matrix-valued measures $\mathcal{M}(\Omega,\mathbb{S}_+^n)$ was defined in [arXiv:2011.05845] \`{a} la Benamou-Brenier, which extends the Kantorovich-Bures and the Wasserstein-Fisher-Rao distances. In this work, we investigate the convergence properties of the discrete transport problems associated with ${\rm WB}_{\Lambda}$. We first present a convergence framework for abstract discretization. Then, we propose a specific discretization scheme that aligns with this framework, under the assumption that the initial and final distributions are absolutely continuous with respect to the Lebesgue measure. Moreover, thanks to the static formulation, we show that such an assumption can be removed for the Wasserstein-Fisher-Rao distance.
We introduce the extremal range, a local statistic for studying the spatial extent of extreme events in random fields on $\mathbb{R}^2$. Conditioned on exceedance of a high threshold at a location $s$, the extremal range at $s$ is the random variable defined as the smallest distance from $s$ to a location where there is a non-exceedance. We leverage tools from excursion-set theory to study distributional properties of the extremal range, propose parametric models and predict the median extremal range at extreme threshold levels. The extremal range captures the rate at which the spatial extent of conditional extreme events scales for increasingly high thresholds, and we relate its distributional properties with the bivariate tail dependence coefficient and the extremal index of time series in classical Extreme-Value Theory. Consistent estimation of the distribution function of the extremal range for stationary random fields is proven. For non-stationary random fields, we implement generalized additive median regression to predict extremal-range maps at very high threshold levels. An application to two large daily temperature datasets, namely reanalyses and climate-model simulations for France, highlights decreasing extremal dependence for increasing threshold levels and reveals strong differences in joint tail decay rates between reanalyses and simulations.
We improve the previously best known upper bounds on the sizes of $\theta$-spherical codes for every $\theta<\theta^*\approx 62.997^{\circ}$ at least by a factor of $0.4325$, in sufficiently high dimensions. Furthermore, for sphere packing densities in dimensions $n\geq 2000$ we have an improvement at least by a factor of $0.4325+\frac{51}{n}$. Our method also breaks many non-numerical sphere packing density bounds in smaller dimensions. This is the first such improvement for each dimension since the work of Kabatyanskii and Levenshtein~\cite{KL} and its later improvement by Levenshtein~\cite{Leven79}. Novelties of this paper include the analysis of triple correlations, usage of the concentration of mass in high dimensions, and the study of the spacings between the roots of Jacobi polynomials.