亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A generalized unbalanced optimal transport distance ${\rm WB}_{\Lambda}$ on matrix-valued measures $\mathcal{M}(\Omega,\mathbb{S}_+^n)$ was defined in [arXiv:2011.05845] \`{a} la Benamou-Brenier, which extends the Kantorovich-Bures and the Wasserstein-Fisher-Rao distances. In this work, we investigate the convergence properties of the discrete transport problems associated with ${\rm WB}_{\Lambda}$. We first present a convergence framework for abstract discretization. Then, we propose a specific discretization scheme that aligns with this framework, under the assumption that the initial and final distributions are absolutely continuous with respect to the Lebesgue measure. Moreover, thanks to the static formulation, we show that such an assumption can be removed for the Wasserstein-Fisher-Rao distance.

相關內容

Motivated by general probability theory, we say that the set $X$ in $\mathbb{R}^d$ is \emph{antipodal of rank $k$}, if for any $k+1$ elements $q_1,\ldots q_{k+1}\in X$, there is an affine map from $\mathrm{conv} X$ to the $k$-dimensional simplex $\Delta_k$ that maps $q_1,\ldots q_{k+1}$ onto the $k+1$ vertices of $\Delta_k$. For $k=1$, it coincides with the well-studied notion of (pairwise) antipodality introduced by Klee. We consider the following natural generalization of Klee's problem on antipodal sets: What is the maximum size of an antipodal set of rank $k$ in $\mathbb{R}^d$? We present a geometric characterization of antipodal sets of rank $k$ and adapting the argument of Danzer and Gr\"unbaum originally developed for the $k=1$ case, we prove an upper bound which is exponential in the dimension. We point out that this problem can be connected to a classical question in computer science on finding perfect hashes, and it provides a lower bound on the maximum size, which is also exponential in the dimension.

Given an $m\times n$ binary matrix $M$ with $|M|=p\cdot mn$ (where $|M|$ denotes the number of 1 entries), define the discrepancy of $M$ as $\mbox{disc}(M)=\displaystyle\max_{X\subset [m], Y\subset [n]}\big||M[X\times Y]|-p|X|\cdot |Y|\big|$. Using semidefinite programming and spectral techniques, we prove that if $\mbox{rank}(M)\leq r$ and $p\leq 1/2$, then $$\mbox{disc}(M)\geq \Omega(mn)\cdot \min\left\{p,\frac{p^{1/2}}{\sqrt{r}}\right\}.$$ We use this result to obtain a modest improvement of Lovett's best known upper bound on the log-rank conjecture. We prove that any $m\times n$ binary matrix $M$ of rank at most $r$ contains an $(m\cdot 2^{-O(\sqrt{r})})\times (n\cdot 2^{-O(\sqrt{r})})$ sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank $r$ is at most $O(\sqrt{r})$.

We study cut finite element discretizations of a Darcy interface problem based on the mixed finite element pairs $\textbf{RT}_k\times Q_k$, $k\geq 0$. Here $Q_k$ is the space of discontinuous polynomial functions of degree less or equal to $k$ and $\textbf{RT}$ is the Raviart-Thomas space. We show that the standard ghost penalty stabilization, often added in the weak forms of cut finite element methods for stability and control of the condition number of the linear system matrix, destroys the divergence-free property of the considered element pairs. Therefore, we propose new stabilization terms for the pressure and show that we recover the optimal approximation of the divergence without losing control of the condition number of the linear system matrix. We prove that with the new stabilization term the proposed cut finite element discretization results in pointwise divergence-free approximations of solenoidal velocity fields. We derive a priori error estimates for the proposed unfitted finite element discretization based on $\textbf{RT}_k\times Q_k$, $k\geq 0$. In addition, by decomposing the computational mesh into macro-elements and applying ghost penalty terms only on interior edges of macro-elements. Numerical experiments with element pairs $\textbf{RT}_0\times Q_0$, $\textbf{RT}_1\times Q_1$, and $\textbf{BDM}_1\times Q_0$. (where $\textbf{BDM}$ is the Brezzi-Douglas-Marini space) indicate that with the new method we have 1) optimal rates of convergence of the approximate velocity and pressure; 2) well-posed linear systems where the condition number of the system matrix scales as it does for fitted finite element discretizations; 3) optimal rates of convergence of the approximate divergence with pointwise divergence-free approximations of solenoidal velocity fields. All three properties hold independently of how the interface is positioned relative to the computational mesh.

We consider the sparsification of sums $F : \mathbb{R}^n \to \mathbb{R}$ where $F(x) = f_1(\langle a_1,x\rangle) + \cdots + f_m(\langle a_m,x\rangle)$ for vectors $a_1,\ldots,a_m \in \mathbb{R}^n$ and functions $f_1,\ldots,f_m : \mathbb{R} \to \mathbb{R}_+$. We show that $(1+\varepsilon)$-approximate sparsifiers of $F$ with support size $\frac{n}{\varepsilon^2} (\log \frac{n}{\varepsilon})^{O(1)}$ exist whenever the functions $f_1,\ldots,f_m$ are symmetric, monotone, and satisfy natural growth bounds. Additionally, we give efficient algorithms to compute such a sparsifier assuming each $f_i$ can be evaluated efficiently. Our results generalize the classic case of $\ell_p$ sparsification, where $f_i(z) = |z|^p$, for $p \in (0, 2]$, and give the first near-linear size sparsifiers in the well-studied setting of the Huber loss function and its generalizations, e.g., $f_i(z) = \min\{|z|^p, |z|^2\}$ for $0 < p \leq 2$. Our sparsification algorithm can be applied to give near-optimal reductions for optimizing a variety of generalized linear models including $\ell_p$ regression for $p \in (1, 2]$ to high accuracy, via solving $(\log n)^{O(1)}$ sparse regression instances with $m \le n(\log n)^{O(1)}$, plus runtime proportional to the number of nonzero entries in the vectors $a_1, \dots, a_m$.

A powerful statistical interpolating concept, which we call \emph{fully lifted} (fl), is introduced and presented while establishing a connection between bilinearly indexed random processes and their corresponding fully decoupled (linearly indexed) comparative alternatives. Despite on occasion very involved technical considerations, the final interpolating forms and their underlying relations admit rather elegant expressions that provide conceivably highly desirable and useful tool for further studying various different aspects of random processes and their applications. We also discuss the generality of the considered models and show that they encompass many well known random structures and optimization problems to which then the obtained results automatically apply.

A recent line of work has shown the unconditional advantage of constant-depth quantum computation, or $\mathsf{QNC^0}$, over $\mathsf{NC^0}$, $\mathsf{AC^0}$, and related models of classical computation. Problems exhibiting this advantage include search and sampling tasks related to the parity function, and it is natural to ask whether $\mathsf{QNC^0}$ can be used to help compute parity itself. We study $\mathsf{AC^0\circ QNC^0}$ -- a hybrid circuit model where $\mathsf{AC^0}$ operates on measurement outcomes of a $\mathsf{QNC^0}$ circuit, and conjecture $\mathsf{AC^0\circ QNC^0}$ cannot achieve $\Omega(1)$ correlation with parity. As evidence for this conjecture, we prove: $\bullet$ When the $\mathsf{QNC^0}$ circuit is ancilla-free, this model achieves only negligible correlation with parity. $\bullet$ For the general (non-ancilla-free) case, we show via a connection to nonlocal games that the conjecture holds for any class of postprocessing functions that has approximate degree $o(n)$ and is closed under restrictions, even when the $\mathsf{QNC^0}$ circuit is given arbitrary quantum advice. By known results this confirms the conjecture for linear-size $\mathsf{AC^0}$ circuits. $\bullet$ Towards a switching lemma for $\mathsf{AC^0\circ QNC^0}$, we study the effect of quantum preprocessing on the decision tree complexity of Boolean functions. We find that from this perspective, nonlocal channels are no better than randomness: a Boolean function $f$ precomposed with an $n$-party nonlocal channel is together equal to a randomized decision tree with worst-case depth at most $\mathrm{DT}_\mathrm{depth}[f]$. Our results suggest that while $\mathsf{QNC^0}$ is surprisingly powerful for search and sampling tasks, that power is "locked away" in the global correlations of its output, inaccessible to simple classical computation for solving decision problems.

In this paper, we consider a problem which we call LTL$_f$ model checking on paths: given a DFA $\mathcal{A}$ and a formula $\phi$ in LTL on finite traces, does there exist a word $w$ such that every path starting in a state of $\mathcal{A}$ and labeled by $w$ satisfies $\phi$? The original motivation for this problem comes from the constrained parts orienting problem, introduced in [Petra Wolf, "Synchronization Under Dynamic Constraints", FSTTCS 2020], where the input constraints restrict the order in which certain states are visited for the first or the last time while reading a word $w$ which is also required to synchronize $\mathcal{A}$. We identify very general conditions under which LTL$_f$ model checking on paths is solvable in polynomial space. For the particular constraints in the parts orienting problem, we consider PSPACE-complete cases and one NP-complete case. The former provide very strong lower bound for LTL$_f$ model checking on paths. The latter is related to (classical) LTL$_f$ model checking for formulas with the until modality only and with no nesting of operators. We also consider LTL$_f$ model checking of the power-set automaton of a given DFA, and get similar results for this setting. For all our problems, we consider the case where the required word must also be synchronizing, and prove that if the problem does not become trivial, then this additional constraint does not change the complexity.

We prove discrete-to-continuum convergence for dynamical optimal transport on $\mathbb{Z}^d$-periodic graphs with energy density having linear growth at infinity. This result provides an answer to a problem left open by Gladbach, Kopfer, Maas, and Portinale (Calc Var Partial Differential Equations 62(5), 2023), where the convergence behaviour of discrete boundary-value dynamical transport problems is proved under the stronger assumption of superlinear growth. Our result extends the known literature to some important classes of examples, such as scaling limits of 1-Wasserstein transport problems. Similarly to what happens in the quadratic case, the geometry of the graph plays a crucial role in the structure of the limit cost function, as we discuss in the final part of this work, which includes some visual representations.

We prove the existence of a computable function $f\colon\mathbb{N}\to\mathbb{N}$ such that for every integer $k$ and every digraph $D$ either contains a collection $\mathcal{C}$ of directed cycles of even length such that no vertex of $D$ belongs to more than four cycles in $\mathcal{C}$, or there exists a set $S\subseteq V(D)$ of size at most $f(k)$ such that $D-S$ has no directed cycle of even length. Moreover, we provide an algorithm that finds one of the two outcomes of this statement in time $g(k)n^{\mathcal{O}(1)}$ for some computable function $g\colon \mathbb{N}\to\mathbb{N}$. Our result unites two deep fields of research from the algorithmic theory for digraphs: The study of the Erd\H{o}s-P\'osa property of digraphs and the study of the Even Dicycle Problem. The latter is the decision problem which asks if a given digraph contains an even dicycle and can be traced back to a question of P\'olya from 1913. It remained open until a polynomial time algorithm was finally found by Robertson, Seymour, and Thomas (Ann. of Math. (2) 1999) and, independently, McCuaig (Electron. J. Combin. 2004; announced jointly at STOC 1997). The Even Dicycle Problem is equivalent to the recognition problem of Pfaffian bipartite graphs and has applications even beyond discrete mathematics and theoretical computer science. On the other hand, Younger's Conjecture (1973), states that dicycles have the Erd\H{o}s-P\'osa property. The conjecture was proven more than two decades later by Reed, Robertson, Seymour, and Thomas (Combinatorica 1996) and opened the path for structural digraph theory as well as the algorithmic study of the directed feedback vertex set problem. Our approach builds upon the techniques used to resolve both problems and combines them into a powerful structural theorem that yields further algorithmic applications for other prominent problems.

For distributions over discrete product spaces $\prod_{i=1}^n \Omega_i'$, Glauber dynamics is a Markov chain that at each step, resamples a random coordinate conditioned on the other coordinates. We show that $k$-Glauber dynamics, which resamples a random subset of $k$ coordinates, mixes $k$ times faster in $\chi^2$-divergence, and assuming approximate tensorization of entropy, mixes $k$ times faster in KL-divergence. We apply this to obtain parallel algorithms in two settings: (1) For the Ising model $\mu_{J,h}(x)\propto \exp(\frac1 2\left\langle x,Jx \right\rangle + \langle h,x\rangle)$ with $\|J\|<1-c$ (the regime where fast mixing is known), we show that we can implement each step of $\widetilde \Theta(n/\|J\|_F)$-Glauber dynamics efficiently with a parallel algorithm, resulting in a parallel algorithm with running time $\widetilde O(\|J\|_F) = \widetilde O(\sqrt n)$. (2) For the mixed $p$-spin model at high enough temperature, we show that with high probability we show that we can implement each step of $\widetilde \Theta(\sqrt n)$-Glauber dynamics efficiently and obtain running time $\widetilde O(\sqrt n)$.

北京阿比特科技有限公司