亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article presents a synthetic distracted driving (SynDD1) dataset for machine learning models to detect and analyze drivers' various distracted behavior and different gaze zones. We collected the data in a stationary vehicle using three in-vehicle cameras positioned at locations: on the dashboard, near the rearview mirror, and on the top right-side window corner. The dataset contains two activity types: distracted activities, and gaze zones for each participant and each activity type has two sets: without appearance blocks and with appearance blocks such as wearing a hat or sunglasses. The order and duration of each activity for each participant are random. In addition, the dataset contains manual annotations for each activity, having its start and end time annotated. Researchers could use this dataset to evaluate the performance of machine learning algorithms for the classification of various distracting activities and gaze zones of drivers.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

We present a data-driven approach to characterizing nonidentifiability of a model's parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective parameters (nonlinear combinations of the physical ones) has previously been established analytically.

The RGB complementary metal-oxidesemiconductor (CMOS) sensor works within the visible light spectrum. Therefore it is very sensitive to environmental light conditions. On the contrary, a long-wave infrared (LWIR) sensor operating in 8-14 micro meter spectral band, functions independent of visible light. In this paper, we exploit both visual and thermal perception units for robust object detection purposes. After delicate synchronization and (cross-) labeling of the FLIR [1] dataset, this multi-modal perception data passes through a convolutional neural network (CNN) to detect three critical objects on the road, namely pedestrians, bicycles, and cars. After evaluation of RGB and infrared (thermal and infrared are often used interchangeably) sensors separately, various network structures are compared to fuse the data at the feature level effectively. Our RGB-thermal (RGBT) fusion network, which takes advantage of a novel entropy-block attention module (EBAM), outperforms the state-of-the-art network [2] by 10% with 82.9% mAP.

Real-time estimation of actual object depth is an essential module for various autonomous system tasks such as 3D reconstruction, scene understanding and condition assessment. During the last decade of machine learning, extensive deployment of deep learning methods to computer vision tasks has yielded approaches that succeed in achieving realistic depth synthesis out of a simple RGB modality. Most of these models are based on paired RGB-depth data and/or the availability of video sequences and stereo images. The lack of sequences, stereo data and RGB-depth pairs makes depth estimation a fully unsupervised single-image transfer problem that has barely been explored so far. This study builds on recent advances in the field of generative neural networks in order to establish fully unsupervised single-shot depth estimation. Two generators for RGB-to-depth and depth-to-RGB transfer are implemented and simultaneously optimized using the Wasserstein-1 distance, a novel perceptual reconstruction term and hand-crafted image filters. We comprehensively evaluate the models using industrial surface depth data as well as the Texas 3D Face Recognition Database, the CelebAMask-HQ database of human portraits and the SURREAL dataset that records body depth. For each evaluation dataset the proposed method shows a significant increase in depth accuracy compared to state-of-the-art single-image transfer methods.

Accurate camera pose estimation is a fundamental requirement for numerous applications, such as autonomous driving, mobile robotics, and augmented reality. In this work, we address the problem of estimating the global 6 DoF camera pose from a single RGB image in a given environment. Previous works consider every part of the image valuable for localization. However, many image regions such as the sky, occlusions, and repetitive non-distinguishable patterns cannot be utilized for localization. In addition to adding unnecessary computation efforts, extracting and matching features from such regions produce many wrong matches which in turn degrades the localization accuracy and efficiency. Our work addresses this particular issue and shows by exploiting an interesting concept of sparse 3D models that we can exploit discriminatory environment parts and avoid useless image regions for the sake of a single image localization. Interestingly, through avoiding selecting keypoints from non-reliable image regions such as trees, bushes, cars, pedestrians, and occlusions, our work acts naturally as an outlier filter. This makes our system highly efficient in that minimal set of correspondences is needed and highly accurate as the number of outliers is low. Our work exceeds state-ofthe-art methods on outdoor Cambridge Landmarks dataset. With only relying on single image at inference, it outweighs in terms of accuracy methods that exploit pose priors and/or reference 3D models while being much faster. By choosing as little as 100 correspondences, it surpasses similar methods that localize from thousands of correspondences, while being more efficient. In particular, it achieves, compared to these methods, an improvement of localization by 33% on OldHospital scene. Furthermore, It outstands direct pose regressors even those that learn from sequence of images

Monocular image-based 3D perception has become an active research area in recent years owing to its applications in autonomous driving. Approaches to monocular 3D perception including detection and tracking, however, often yield inferior performance when compared to LiDAR-based techniques. Through systematic analysis, we identified that per-object depth estimation accuracy is a major factor bounding the performance. Motivated by this observation, we propose a multi-level fusion method that combines different representations (RGB and pseudo-LiDAR) and temporal information across multiple frames for objects (tracklets) to enhance per-object depth estimation. Our proposed fusion method achieves the state-of-the-art performance of per-object depth estimation on the Waymo Open Dataset, the KITTI detection dataset, and the KITTI MOT dataset. We further demonstrate that by simply replacing estimated depth with fusion-enhanced depth, we can achieve significant improvements in monocular 3D perception tasks, including detection and tracking.

Recently, deep learning technology have been extensively used in the field of image recognition. However, its main application is the recognition and detection of ordinary pictures and common scenes. It is challenging to effectively and expediently analyze remote-sensing images obtained by the image acquisition systems on unmanned aerial vehicles (UAVs), which includes the identification of the target and calculation of its position. Aerial remote sensing images have different shooting angles and methods compared with ordinary pictures or images, which makes remote-sensing images play an irreplaceable role in some areas. In this study, a new target detection and recognition method in remote-sensing images is proposed based on deep convolution neural network (CNN) for the provision of multilevel information of images in combination with a region proposal network used to generate multiangle regions-of-interest. The proposed method generated results that were much more accurate and precise than those obtained with traditional ways. This demonstrated that the model proposed herein displays tremendous applicability potential in remote-sensing image recognition.

The rapid development of network science and technologies depends on shareable datasets. Currently, there is no standard practice for reporting and sharing network datasets. Some network dataset providers only share links, while others provide some contexts or basic statistics. As a result, critical information may be unintentionally dropped, and network dataset consumers may misunderstand or overlook critical aspects. Inappropriately using a network dataset can lead to severe consequences (e.g., discrimination) especially when machine learning models on networks are deployed in high-stake domains. Challenges arise as networks are often used across different domains (e.g., network science, physics, etc) and have complex structures. To facilitate the communication between network dataset providers and consumers, we propose network report. A network report is a structured description that summarizes and contextualizes a network dataset. Network report extends the idea of dataset reports (e.g., Datasheets for Datasets) from prior work with network-specific descriptions of the non-i.i.d. nature, demographic information, network characteristics, etc. We hope network reports encourage transparency and accountability in network research and development across different fields.

The globalization of the electronics supply chain requires effective methods to thwart reverse engineering and IP theft. Logic locking is a promising solution, but there are many open concerns. First, even when applied at a higher level of abstraction, locking may result in significant overhead without improving the security metric. Second, optimizing a security metric is application-dependent and designers must evaluate and compare alternative solutions. We propose a meta-framework to optimize the use of behavioral locking during the high-level synthesis (HLS) of IP cores. Our method operates on chip's specification (before HLS) and it is compatible with all HLS tools, complementing industrial EDA flows. Our meta-framework supports different strategies to explore the design space and to select points to be locked automatically. We evaluated our method on the optimization of differential entropy, achieving better results than random or topological locking: 1) we always identify a valid solution that optimizes the security metric, while topological and random locking can generate unfeasible solutions; 2) we minimize the number of bits used for locking up to more than 90% (requiring smaller tamper-proof memories); 3) we make better use of hardware resources since we obtain similar overheads but with higher security metric.

In many visual systems, visual tracking often bases on RGB image sequences, in which some targets are invalid in low-light conditions, and tracking performance is thus affected significantly. Introducing other modalities such as depth and infrared data is an effective way to handle imaging limitations of individual sources, but multi-modal imaging platforms usually require elaborate designs and cannot be applied in many real-world applications at present. Near-infrared (NIR) imaging becomes an essential part of many surveillance cameras, whose imaging is switchable between RGB and NIR based on the light intensity. These two modalities are heterogeneous with very different visual properties and thus bring big challenges for visual tracking. However, existing works have not studied this challenging problem. In this work, we address the cross-modal object tracking problem and contribute a new video dataset, including 654 cross-modal image sequences with over 481K frames in total, and the average video length is more than 735 frames. To promote the research and development of cross-modal object tracking, we propose a new algorithm, which learns the modality-aware target representation to mitigate the appearance gap between RGB and NIR modalities in the tracking process. It is plug-and-play and could thus be flexibly embedded into different tracking frameworks. Extensive experiments on the dataset are conducted, and we demonstrate the effectiveness of the proposed algorithm in two representative tracking frameworks against 17 state-of-the-art tracking methods. We will release the dataset for free academic usage, dataset download link and code will be released soon.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

北京阿比特科技有限公司