Higher order finite difference Weighted Essentially Non-Oscillatory (WENO) schemes have been constructed for conservation laws. For multidimensional problems, they offer high order accuracy at a fraction of the cost of a finite volume WENO or DG scheme of comparable accuracy. This makes them quite attractive for several science and engineering applications. But, to the best of our knowledge, such schemes have not been extended to non-linear hyperbolic systems with non-conservative products. In this paper, we perform such an extension which improves the domain of applicability of such schemes. The extension is carried out by writing the scheme in fluctuation form. We use the HLLI Riemann solver of Dumbser and Balsara (2016) as a building block for carrying out this extension. Because of the use of an HLL building block, the resulting scheme has a proper supersonic limit. The use of anti-diffusive fluxes ensures that stationary discontinuities can be preserved by the scheme, thus expanding its domain of applicability. Our new finite difference WENO formulation uses the same WENO reconstruction that was used in classical versions, making it very easy for users to transition over to the present formulation. For conservation laws, the new finite difference WENO is shown to perform as well as the classical version of finite difference WENO, with two major advantages:- 1) It can capture jumps in stationary linearly degenerate wave families exactly. 2) It only requires the reconstruction to be applied once. Several examples from hyperbolic PDE systems with non-conservative products are shown which indicate that the scheme works and achieves its design order of accuracy for smooth multidimensional flows. Stringent Riemann ... *Abstract truncated, see PDF*
This paper introduces a formulation of the variable density incompressible Navier-Stokes equations by modifying the nonlinear terms in a consistent way. For Galerkin discretizations, the formulation leads to full discrete conservation of mass, squared density, momentum, angular momentum and kinetic energy without the divergence-free constraint being strongly enforced. In addition to favorable conservation properties, the formulation is shown to make the density field invariant to global shifts. The effect of viscous regularizations on conservation properties is also investigated. Numerical tests validate the theory developed in this work. The new formulation shows superior performance compared to other formulations from the literature, both in terms of accuracy for smooth problems and in terms of robustness.
We present a mass lumping approach based on an isogeometric Petrov-Galerkin method that preserves higher-order spatial accuracy in explicit dynamics calculations irrespective of the polynomial degree of the spline approximation. To discretize the test function space, our method uses an approximate dual basis, whose functions are smooth, have local support and satisfy approximate bi-orthogonality with respect to a trial space of B-splines. The resulting mass matrix is ``close'' to the identity matrix. Specifically, a lumped version of this mass matrix preserves all relevant polynomials when utilized in a Galerkin projection. Consequently, the mass matrix can be lumped (via row-sum lumping) without compromising spatial accuracy in explicit dynamics calculations. We address the imposition of Dirichlet boundary conditions and the preservation of approximate bi-orthogonality under geometric mappings. In addition, we establish a link between the exact dual and approximate dual basis functions via an iterative algorithm that improves the approximate dual basis towards exact bi-orthogonality. We demonstrate the performance of our higher-order accurate mass lumping approach via convergence studies and spectral analyses of discretized beam, plate and shell models.
Inversion for parameters of a physical process typically requires taking expensive measurements, and the task of finding an optimal set of measurements is known as the optimal design problem. Surprisingly, measurement locations in optimal designs are sometimes extremely clustered, and researchers often avoid measurement clusterization by modifying the optimal design problem. We consider a certain flavor of the optimal design problem, based on the Bayesian D-optimality criterion, and suggest an analytically tractable model for D-optimal designs in Bayesian linear inverse problems over Hilbert spaces. We demonstrate that measurement clusterization is a generic property of D-optimal designs, and prove that correlated noise between measurements mitigates clusterization. We also give a full characterization of D-optimal designs under our model: We prove that D-optimal designs uniformly reduce uncertainty in a select subset of prior covariance eigenvectors. Finally, we show how measurement clusterization is a consequence of the characterization mentioned above and the pigeonhole principle.
Coverings of undirected graphs are used in distributed computing, and unfoldings of directed graphs in semantics of programs. We study these two notions from a graph theoretical point of view so as to highlight their similarities, as they are both defined in terms of surjective graph homomorphisms. In particular, universal coverings and complete unfoldings are infinite trees that are regular if the initial graphs are finite. Regularity means that a tree has finitely many subtrees up to isomorphism. Two important theorems have been established by Leighton and Norris for coverings. We prove similar statements for unfoldings. Our study of the difficult proof of Leighton's Theorem lead us to generalize coverings and similarly, unfoldings, by attaching finite or infinite weights to edges of the covered or unfolded graphs. This generalization yields a canonical factorization of the universal covering of any finite graph, that (provably) does not exist without using weights. Introducing infinite weights provides us with finite descriptions of regular trees having nodes of countably infinite degree. We also generalize to weighted graphs and their coverings a classical factorization theorem of their characteristic polynomials.
Atmospheric systems incorporating thermal dynamics must be stable with respect to both energy and entropy. While energy conservation can be enforced via the preservation of the skew-symmetric structure of the Hamiltonian form of the equations of motion, entropy conservation is typically derived as an additional invariant of the Hamiltonian system, and satisfied via the exact preservation of the chain rule. This is particularly challenging since the function spaces used to represent the thermodynamic variables in compatible finite element discretisations are typically discontinuous at element boundaries. In the present work we negate this problem by constructing our equations of motion via weighted averages of skew-symmetric formulations using both flux form and material form advection of thermodynamic variables, which allow for the necessary cancellations required to conserve entropy without the chain rule. We show that such formulations allow for the stable simulation of both the thermal shallow water and 3D compressible Euler equations on the sphere using mixed compatible finite elements without entropy damping.
Recently, several studies consider the stochastic optimization problem but in a heavy-tailed noise regime, i.e., the difference between the stochastic gradient and the true gradient is assumed to have a finite $p$-th moment (say being upper bounded by $\sigma^{p}$ for some $\sigma\geq0$) where $p\in(1,2]$, which not only generalizes the traditional finite variance assumption ($p=2$) but also has been observed in practice for several different tasks. Under this challenging assumption, lots of new progress has been made for either convex or nonconvex problems, however, most of which only consider smooth objectives. In contrast, people have not fully explored and well understood this problem when functions are nonsmooth. This paper aims to fill this crucial gap by providing a comprehensive analysis of stochastic nonsmooth convex optimization with heavy-tailed noises. We revisit a simple clipping-based algorithm, whereas, which is only proved to converge in expectation but under the additional strong convexity assumption. Under appropriate choices of parameters, for both convex and strongly convex functions, we not only establish the first high-probability rates but also give refined in-expectation bounds compared with existing works. Remarkably, all of our results are optimal (or nearly optimal up to logarithmic factors) with respect to the time horizon $T$ even when $T$ is unknown in advance. Additionally, we show how to make the algorithm parameter-free with respect to $\sigma$, in other words, the algorithm can still guarantee convergence without any prior knowledge of $\sigma$. Furthermore, an initial distance adaptive convergence rate is provided if $\sigma$ is assumed to be known.
Algorithmic stability is an important notion that has proven powerful for deriving generalization bounds for practical algorithms. The last decade has witnessed an increasing number of stability bounds for different algorithms applied on different classes of loss functions. While these bounds have illuminated various properties of optimization algorithms, the analysis of each case typically required a different proof technique with significantly different mathematical tools. In this study, we make a novel connection between learning theory and applied probability and introduce a unified guideline for proving Wasserstein stability bounds for stochastic optimization algorithms. We illustrate our approach on stochastic gradient descent (SGD) and we obtain time-uniform stability bounds (i.e., the bound does not increase with the number of iterations) for strongly convex losses and non-convex losses with additive noise, where we recover similar results to the prior art or extend them to more general cases by using a single proof technique. Our approach is flexible and can be generalizable to other popular optimizers, as it mainly requires developing Lyapunov functions, which are often readily available in the literature. It also illustrates that ergodicity is an important component for obtaining time-uniform bounds -- which might not be achieved for convex or non-convex losses unless additional noise is injected to the iterates. Finally, we slightly stretch our analysis technique and prove time-uniform bounds for SGD under convex and non-convex losses (without additional additive noise), which, to our knowledge, is novel.
Accurate and efficient estimation of rare events probabilities is of significant importance, since often the occurrences of such events have widespread impacts. The focus in this work is on precisely quantifying these probabilities, often encountered in reliability analysis of complex engineering systems, based on an introduced framework termed Approximate Sampling Target with Post-processing Adjustment (ASTPA), which herein is integrated with and supported by gradient-based Hamiltonian Markov Chain Monte Carlo (HMCMC) methods. The developed techniques in this paper are applicable from low- to high-dimensional stochastic spaces, and the basic idea is to construct a relevant target distribution by weighting the original random variable space through a one-dimensional output likelihood model, using the limit-state function. To sample from this target distribution, we exploit HMCMC algorithms, a family of MCMC methods that adopts physical system dynamics, rather than solely using a proposal probability distribution, to generate distant sequential samples, and we develop a new Quasi-Newton mass preconditioned HMCMC scheme (QNp-HMCMC), which is particularly efficient and suitable for high-dimensional spaces. To eventually compute the rare event probability, an original post-sampling step is devised using an inverse importance sampling procedure based on the already obtained samples. The statistical properties of the estimator are analyzed as well, and the performance of the proposed methodology is examined in detail and compared against Subset Simulation in a series of challenging low- and high-dimensional problems.
In this paper, we propose the Ordered Median Tree Location Problem (OMT). The OMT is a single-allocation facility location problem where p facilities must be placed on a network connected by a non-directed tree. The objective is to minimize the sum of the ordered weighted averaged allocation costs plus the sum of the costs of connecting the facilities in the tree. We present different MILP formulations for the OMT based on properties of the minimum spanning tree problem and the ordered median optimization. Given that ordered median hub location problems are rather difficult to solve we have improved the OMT solution performance by introducing covering variables in a valid reformulation plus developing two pre-processing phases to reduce the size of this formulations. In addition, we propose a Benders decomposition algorithm to approach the OMT. We establish an empirical comparison between these new formulations and we also provide enhancements that together with a proper formulation allow to solve medium size instances on general random graphs.
Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.