We present a mass lumping approach based on an isogeometric Petrov-Galerkin method that preserves higher-order spatial accuracy in explicit dynamics calculations irrespective of the polynomial degree of the spline approximation. To discretize the test function space, our method uses an approximate dual basis, whose functions are smooth, have local support and satisfy approximate bi-orthogonality with respect to a trial space of B-splines. The resulting mass matrix is ``close'' to the identity matrix. Specifically, a lumped version of this mass matrix preserves all relevant polynomials when utilized in a Galerkin projection. Consequently, the mass matrix can be lumped (via row-sum lumping) without compromising spatial accuracy in explicit dynamics calculations. We address the imposition of Dirichlet boundary conditions and the preservation of approximate bi-orthogonality under geometric mappings. In addition, we establish a link between the exact dual and approximate dual basis functions via an iterative algorithm that improves the approximate dual basis towards exact bi-orthogonality. We demonstrate the performance of our higher-order accurate mass lumping approach via convergence studies and spectral analyses of discretized beam, plate and shell models.
Exploring the origin and properties of magnetic fields is crucial to the development of many fields such as physics, astronomy and meteorology. We focus on the edge element approximation and theoretical analysis of celestial dynamo system with quasi-vacuum boundary conditions. The system not only ensures that the magnetic field on the spherical shell is generated from the dynamo model, but also provides convenience for the application of the edge element method. We demonstrate the existence, uniqueness and stability of the solution to the system by the fixed point theorem. Then, we approximate the system using the edge element method, which is more efficient in dealing with electromagnetic field problems. Moreover, we also discuss the stability of the corresponding discrete scheme. And the convergence is demonstrated by later numerical tests. Finally, we simulate the three-dimensional time evolution of the spherical interface dynamo model, and the characteristics of the simulated magnetic field are consistent with existing work.
Autonomous racing is a research field gaining large popularity, as it pushes autonomous driving algorithms to their limits and serves as a catalyst for general autonomous driving. For scaled autonomous racing platforms, the computational constraint and complexity often limit the use of Model Predictive Control (MPC). As a consequence, geometric controllers are the most frequently deployed controllers. They prove to be performant while yielding implementation and operational simplicity. Yet, they inherently lack the incorporation of model dynamics, thus limiting the race car to a velocity domain where tire slip can be neglected. This paper presents Model- and Acceleration-based Pursuit (MAP) a high-performance model-based trajectory tracking algorithm that preserves the simplicity of geometric approaches while leveraging tire dynamics. The proposed algorithm allows accurate tracking of a trajectory at unprecedented velocities compared to State-of-the-Art (SotA) geometric controllers. The MAP controller is experimentally validated and outperforms the reference geometric controller four-fold in terms of lateral tracking error, yielding a tracking error of 0.055m at tested speeds up to 11m/s.
Several physical problems modeled by second-order partial differential equations can be efficiently solved using mixed finite elements of the Raviart-Thomas family for N-simplexes, introduced in the seventies. In case Neumann conditions are prescribed on a curvilinear boundary, the normal component of the flux variable should preferably not take up values at nodes shifted to the boundary of the approximating polytope in the corresponding normal direction. This is because the method's accuracy downgrades, which was shown in \cite{FBRT}. In that work an order-preserving technique was studied, based on a parametric version of these elements with curved simplexes. In this paper an alternative with straight-edged triangles for two-dimensional problems is proposed. The key point of this method is a Petrov-Galerkin formulation of the mixed problem, in which the test-flux space is a little different from the shape-flux space. After carrying out a well-posedness and stability analysis, error estimates of optimal order are proven.
We present compact semi-implicit finite difference schemes on structured grids for numerical solutions of the advection by an external velocity and by a speed in normal direction that are applicable in level set methods. The most involved numerical scheme is third order accurate for the linear advection with a space dependent velocity and unconditionally stable in the sense of von Neumann stability analysis. We also present a simple high-resolution scheme that gives a TVD (Total Variation Diminishing) approximation of the spatial derivative for the advected level set function. In the case of nonlinear advection, the semi-implicit discretization is proposed to linearize the problem. The compact form of implicit stencil in numerical schemes containing unknowns only in the upwind direction allows applications of efficient algebraic solvers like fast sweeping methods. Numerical tests to evolve a smooth and non-smooth interface and an example with a large variation of velocity confirm the good accuracy of the methods and fast convergence of the algebraic solver even in the case of very large Courant numbers.
Subspaces obtained by the orthogonal projection of locally supported square-integrable vector fields onto the Hardy spaces $H_+(\mathbb{S})$ and $H_-(\mathbb{S})$, respectively, play a role in various inverse potential field problems since they characterize the uniquely recoverable components of the underlying sources. Here, we consider approximation in these subspaces by a particular set of spherical basis functions. Error bounds are provided along with further considerations on norm-minimizing vector fields that satisfy the underlying localization constraint. The new aspect here is that the used spherical basis functions are themselves members of the subspaces under consideration.
Ordered random vectors are frequently encountered in many problems. The generalized order statistics (GOS) and sequential order statistics (SOS) are two general models for ordered random vectors. However, these two models do not capture the dependency structures that are present in the underlying random variables. In this paper, we study the developed sequential order statistics (DSOS) and developed generalized order statistics (DGOS) models that describe the dependency structures of ordered random vectors. We then study various univariate and multivariate ordering properties of DSOS and DGOS models under Archimedean copula. We consider both one-sample and two-sample scenarios and develop corresponding results.
To improve the robustness of graph neural networks (GNN), graph structure learning (GSL) has attracted great interest due to the pervasiveness of noise in graph data. Many approaches have been proposed for GSL to jointly learn a clean graph structure and corresponding representations. To extend the previous work, this paper proposes a novel regularized GSL approach, particularly with an alignment of feature information and graph information, which is motivated mainly by our derived lower bound of node-level Rademacher complexity for GNNs. Additionally, our proposed approach incorporates sparse dimensional reduction to leverage low-dimensional node features that are relevant to the graph structure. To evaluate the effectiveness of our approach, we conduct experiments on real-world graphs. The results demonstrate that our proposed GSL method outperforms several competitive baselines, especially in scenarios where the graph structures are heavily affected by noise. Overall, our research highlights the importance of integrating feature and graph information alignment in GSL, as inspired by our derived theoretical result, and showcases the superiority of our approach in handling noisy graph structures through comprehensive experiments on real-world datasets.
The goal of this work is to study waves interacting with partially immersed objects allowed to move freely in the vertical direction, and in a regime in which the propagation of the waves is described by the one dimensional Boussinesq-Abbott system. The problem can be reduced to a transmission problem for this Boussinesq system, in which the transmission conditions between the components of the domain at the left and at the right of the object are determined through the resolution of coupled forced ODEs in time satisfied by the vertical displacement of the object and the average discharge in the portion of the fluid located under the object. We propose a new extended formulation in which these ODEs are complemented by two other forced ODEs satisfied by the trace of the surface elevation at the contact points. The interest of this new extended formulation is that the forcing terms are easy to compute numerically and that the surface elevation at the contact points is furnished for free. Based on this formulation, we propose a second order scheme that involves a generalization of the MacCormack scheme with nonlocal flux and a source term, which is coupled to a second order Heun scheme for the ODEs. In order to validate this scheme, several explicit solutions for this wave-structure interaction problem are derived and can serve as benchmark for future codes. As a byproduct, our method provides a second order scheme for the generation of waves at the entrance of the numerical domain for the Boussinesq-Abbott system.
In this paper, we study the graph induced by the $\textit{2-swap}$ permutation on words with a fixed Parikh vector. A $2$-swap is defined as a pair of positions $s = (i, j)$ where the word $w$ induced by the swap $s$ on $v$ is $v[1] v[2] \dots v[i - 1] v[j] v[i+1] \dots v[j - 1] v[i] v[j + 1] \dots v[n]$. With these permutations, we define the $\textit{Configuration Graph}$, $G(P)$ defined over a given Parikh vector. Each vertex in $G(P)$ corresponds to a unique word with the Parikh vector $P$, with an edge between any pair of words $v$ and $w$ if there exists a swap $s$ such that $v \circ s = w$. We provide several key combinatorial properties of this graph, including the exact diameter of this graph, the clique number of the graph, and the relationships between subgraphs within this graph. Additionally, we show that for every vertex in the graph, there exists a Hamiltonian path starting at this vertex. Finally, we provide an algorithm enumerating these paths from a given input word of length $n$ with a delay of at most $O(\log n)$ between outputting edges, requiring $O(n \log n)$ preprocessing.
Effective resistances are ubiquitous in graph algorithms and network analysis. In this work, we study sublinear time algorithms to approximate the effective resistance of an adjacent pair $s$ and $t$. We consider the classical adjacency list model for local algorithms. While recent works have provided sublinear time algorithms for expander graphs, we prove several lower bounds for general graphs of $n$ vertices and $m$ edges: 1.It needs $\Omega(n)$ queries to obtain $1.01$-approximations of the effective resistance of an adjacent pair $s$ and $t$, even for graphs of degree at most 3 except $s$ and $t$. 2.For graphs of degree at most $d$ and any parameter $\ell$, it needs $\Omega(m/\ell)$ queries to obtain $c \cdot \min\{d, \ell\}$-approximations where $c>0$ is a universal constant. Moreover, we supplement the first lower bound by providing a sublinear time $(1+\epsilon)$-approximation algorithm for graphs of degree 2 except the pair $s$ and $t$. One of our technical ingredients is to bound the expansion of a graph in terms of the smallest non-trivial eigenvalue of its Laplacian matrix after removing edges. We discover a new lower bound on the eigenvalues of perturbed graphs (resp. perturbed matrices) by incorporating the effective resistance of the removed edge (resp. the leverage scores of the removed rows), which may be of independent interest.