亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We improve the worst-case information theoretic lower bound of Munro and Wu (ISAAC 2018) for $n-$vertex unlabeled chordal graphs when vertex leafage is bounded and leafage is unbounded. The class of unlabeled $k-$vertex leafage chordal graphs that consists of all chordal graphs with vertex leafage at most $k$ and unbounded leafage, denoted $\mathcal{G}_k$, is introduced for the first time. For $k>0$ in $o(n/\log n)$, we obtain a lower bound of $((k-1)n \log n -kn \log k - O(\log n))-$bits on the size of any data structure that encodes a graph in $\mathcal{G}_k$. Further, for every $k-$vertex leafage chordal graph $G$ such that for $k>1$ in $o(n^c), c >0$, we present a $((k-1)n \log n + o(kn \log n))-$bit succinct data structure, constructed using the succinct data structure for path graphs with $kn/2$ vertices. Our data structure supports adjacency query in $O(k \log n)$ time and using additional $2n \log n$ bits, an $O(k^2 d_v \log n + \log^2 n)$ time neighbourhood query where $d_v$ is degree of $v \in V$.

相關內容

We consider limit probabilities of first order properties in random graphs with a given degree sequence. Under mild conditions on the degree sequence, we show that the closure set of limit probabilities is a finite union of closed intervals. Moreover, we characterize the degree sequences for which this closure set is the interval $[0,1]$, a property that is intimately related with the probability that the random graph is acyclic. As a side result, we compile a full description of the cycle distribution of random graphs and study their fragment (disjoint union of unicyclic components) in the subcritical regime. Finally, we amend the proof of the existence of limit probabilities for first order properties in random graphs with a given degree sequence; this result was already claimed by Lynch~[IEEE LICS 2003] but his proof contained some inaccuracies.

The new generation of observatories and instruments (VLT/ERIS, JWST, ELT) motivate the development of robust methods to detect and characterise faint and close-in exoplanets. Molecular mapping and cross-correlation for spectroscopy use molecular templates to isolate a planet's spectrum from its host star. However, reliance on signal-to-noise ratio (S/N) metrics can lead to missed discoveries, due to strong assumptions of Gaussian independent and identically distributed noise. We introduce machine learning for cross-correlation spectroscopy (MLCCS); the method aims to leverage weak assumptions on exoplanet characterisation, such as the presence of specific molecules in atmospheres, to improve detection sensitivity for exoplanets. MLCCS methods, including a perceptron and unidimensional convolutional neural networks, operate in the cross-correlated spectral dimension, in which patterns from molecules can be identified. We test on mock datasets of synthetic planets inserted into real noise from SINFONI at K-band. The results from MLCCS show outstanding improvements. The outcome on a grid of faint synthetic gas giants shows that for a false discovery rate up to 5%, a perceptron can detect about 26 times the amount of planets compared to an S/N metric. This factor increases up to 77 times with convolutional neural networks, with a statistical sensitivity shift from 0.7% to 55.5%. In addition, MLCCS methods show a drastic improvement in detection confidence and conspicuity on imaging spectroscopy. Once trained, MLCCS methods offer sensitive and rapid detection of exoplanets and their molecular species in the spectral dimension. They handle systematic noise and challenging seeing conditions, can adapt to many spectroscopic instruments and modes, and are versatile regarding atmospheric characteristics, which can enable identification of various planets in archival and future data.

We record a particularly simple construction on top of Lumsdaine's local universes that allows for a Coquand-style universe of propositions with propositional extensionality to be interpreted in a category with subobject classifiers.

Selecting the best regularization parameter in inverse problems is a classical and yet challenging problem. Recently, data-driven approaches have become popular to tackle this challenge. These approaches are appealing since they do require less a priori knowledge, but their theoretical analysis is limited. In this paper, we propose and study a statistical machine learning approach, based on empirical risk minimization. Our main contribution is a theoretical analysis, showing that, provided with enough data, this approach can reach sharp rates while being essentially adaptive to the noise and smoothness of the problem. Numerical simulations corroborate and illustrate the theoretical findings. Our results are a step towards grounding theoretically data-driven approaches to inverse problems.

The classical theory of Kosambi-Cartan-Chern (KCC) developed in differential geometry provides a powerful method for analyzing the behaviors of dynamical systems. In the KCC theory, the properties of a dynamical system are described in terms of five geometrical invariants, of which the second corresponds to the so-called Jacobi stability of the system. Different from that of the Lyapunov stability that has been studied extensively in the literature, the analysis of the Jacobi stability has been investigated more recently using geometrical concepts and tools. It turns out that the existing work on the Jacobi stability analysis remains theoretical and the problem of algorithmic and symbolic treatment of Jacobi stability analysis has yet to be addressed. In this paper, we initiate our study on the problem for a class of ODE systems of arbitrary dimension and propose two algorithmic schemes using symbolic computation to check whether a nonlinear dynamical system may exhibit Jacobi stability. The first scheme, based on the construction of the complex root structure of a characteristic polynomial and on the method of quantifier elimination, is capable of detecting the existence of the Jacobi stability of the given dynamical system. The second algorithmic scheme exploits the method of semi-algebraic system solving and allows one to determine conditions on the parameters for a given dynamical system to have a prescribed number of Jacobi stable fixed points. Several examples are presented to demonstrate the effectiveness of the proposed algorithmic schemes.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司