We show fully polynomial time randomized approximation schemes (FPRAS) for counting matchings of a given size, or more generally sampling/counting monomer-dimer systems in planar, not-necessarily-bipartite, graphs. While perfect matchings on planar graphs can be counted exactly in polynomial time, counting non-perfect matchings was shown by [Jer87] to be #P-hard, who also raised the question of whether efficient approximate counting is possible. We answer this affirmatively by showing that the multi-site Glauber dynamics on the set of monomers in a monomer-dimer system always mixes rapidly, and that this dynamics can be implemented efficiently on downward-closed families of graphs where counting perfect matchings is tractable. As further applications of our results, we show how to sample efficiently using multi-site Glauber dynamics from partition-constrained strongly Rayleigh distributions, and nonsymmetric determinantal point processes. In order to analyze mixing properties of the multi-site Glauber dynamics, we establish two notions for generating polynomials of discrete set-valued distributions: sector-stability and fractional log-concavity. These notions generalize well-studied properties like real-stability and log-concavity, but unlike them robustly degrade under useful transformations applied to the distribution. We relate these notions to pairwise correlations in the underlying distribution and the notion of spectral independence introduced by [ALO20], providing a new tool for establishing spectral independence based on geometry of polynomials. As a byproduct of our techniques, we show that polynomials avoiding roots in a sector of the complex plane must satisfy what we call fractional log-concavity; this extends a classic result established by [Gar59] who showed homogeneous polynomials that have no roots in a half-plane must be log-concave over the positive orthant.
Indoor scene reconstruction from monocular images has long been sought after by augmented reality and robotics developers. Recent advances in neural field representations and monocular priors have led to remarkable results in scene-level surface reconstructions. The reliance on Multilayer Perceptrons (MLP), however, significantly limits speed in training and rendering. In this work, we propose to directly use signed distance function (SDF) in sparse voxel block grids for fast and accurate scene reconstruction without MLPs. Our globally sparse and locally dense data structure exploits surfaces' spatial sparsity, enables cache-friendly queries, and allows direct extensions to multi-modal data such as color and semantic labels. To apply this representation to monocular scene reconstruction, we develop a scale calibration algorithm for fast geometric initialization from monocular depth priors. We apply differentiable volume rendering from this initialization to refine details with fast convergence. We also introduce efficient high-dimensional Continuous Random Fields (CRFs) to further exploit the semantic-geometry consistency between scene objects. Experiments show that our approach is 10x faster in training and 100x faster in rendering while achieving comparable accuracy to state-of-the-art neural implicit methods.
Suppose that we have $n$ agents and $n$ items which lie in a shared metric space. We would like to match the agents to items such that the total distance from agents to their matched items is as small as possible. However, instead of having direct access to distances in the metric, we only have each agent's ranking of the items in order of distance. Given this limited information, what is the minimum possible worst-case approximation ratio (known as the distortion) that a matching mechanism can guarantee? Previous work by Caragiannis et al. proved that the (deterministic) Serial Dictatorship mechanism has distortion at most $2^n - 1$. We improve this by providing a simple deterministic mechanism that has distortion $O(n^2)$. We also provide the first nontrivial lower bound on this problem, showing that any matching mechanism (deterministic or randomized) must have worst-case distortion $\Omega(\log n)$. In addition to these new bounds, we show that a large class of truthful mechanisms derived from Deferred Acceptance all have worst-case distortion at least $2^n - 1$, and we find an intriguing connection between thin matchings (analogous to the well-known thin trees conjecture) and the distortion gap between deterministic and randomized mechanisms.
We introduce a new parameter, called stretch-width, that we show sits strictly between clique-width and twin-width. Unlike the reduced parameters [BKW '22], planar graphs and polynomial subdivisions do not have bounded stretch-width. This leaves open the possibility of efficient algorithms for a broad fragment of problems within Monadic Second-Order (MSO) logic on graphs of bounded stretch-width. In this direction, we prove that graphs of bounded maximum degree and bounded stretch-width have at most logarithmic treewidth. As a consequence, in classes of bounded stretch-width, Maximum Independent Set can be solved in subexponential time $2^{O(n^{4/5} \log n)}$ on $n$-vertex graphs, and, if further the maximum degree is bounded, Existential Counting Modal Logic [Pilipczuk '11] can be model-checked in polynomial time. We also give a polynomial-time $O(\text{OPT}^2)$-approximation for the stretch-width of symmetric $0,1$-matrices or ordered graphs. Somewhat unexpectedly, we prove that exponential subdivisions of bounded-degree graphs have bounded stretch-width. This allows to complement the logarithmic upper bound of treewidth with a matching lower bound. We leave as open the existence of an efficient approximation algorithm for the stretch-width of unordered graphs, if the exponential subdivisions of all graphs have bounded stretch-width, and if graphs of bounded stretch-width have logarithmic clique-width (or rank-width).
This paper provides the Generalized Mattson Solomon polynomial for repeated-root polycyclic codes over local rings that gives an explicit decomposition of them in terms of idempotents that completes the single root study. It also states some structural properties of repeated-root polycyclic codes over finite fields in terms of matrix product codes. Both approaches provide a description of the $\perp_0$-dual code of a given polycyclic code.
We study the approximation of integrals $\int_D f(\boldsymbol{x}^\top A) \mathrm{d} \mu(\boldsymbol{x})$, where $A$ is a matrix, by quasi-Monte Carlo (QMC) rules $N^{-1} \sum_{k=0}^{N-1} f(\boldsymbol{x}_k^\top A)$. We are interested in cases where the main cost arises from calculating the products $\boldsymbol{x}_k^\top A$. We design QMC rules for which the computation of $\boldsymbol{x}_k^\top A$, $k = 0, 1, \ldots, N-1$, can be done fast, and for which the error of the QMC rule is similar to the standard QMC error. We do not require that $A$ has any particular structure. For instance, this approach can be used when approximating the expected value of a function with a multivariate normal random variable with a given covariance matrix, or when approximating the expected value of the solution of a PDE with random coefficients. The speed-up of the computation time is sometimes better and sometimes worse than the fast QMC matrix-vector product from [Dick, Kuo, Le Gia, and Schwab, Fast QMC Matrix-Vector Multiplication, SIAM J. Sci. Comput. 37 (2015)]. As in that paper, our approach applies to (polynomial) lattice point sets, but also to digital nets (we are currently not aware of any approach which allows one to apply the fast method from the aforementioned paper of Dick, Kuo, Le Gia, and Schwab to digital nets). Our method does not use FFT, instead we use repeated values in the quadrature points to derive a reduction in the computation time. This arises from the reduced CBC construction of lattice rules and polynomial lattice rules. The reduced CBC construction has been shown to reduce the computation time for the CBC construction. Here we show that it can also be used to also reduce the computation time of the QMC rule.
The internal behaviour of a population is an important feature to take account of when modelling their dynamics. In line with kin selection theory, many social species tend to cluster into distinct groups in order to enhance their overall population fitness. Temporal interactions between populations are often modelled using classical mathematical models, but these sometimes fail to delve deeper into the, often uncertain, relationships within populations. Here, we introduce a stochastic framework that aims to capture the interactions of animal groups and an auxiliary population over time. We demonstrate the model's capabilities, from a Bayesian perspective, through simulation studies and by fitting it to predator-prey count time series data. We then derive an approximation to the group correlation structure within such a population, while also taking account of the effect of the auxiliary population. We finally discuss how this approximation can lead to ecologically realistic interpretations in a predator-prey context. This approximation can also serve as verification to whether the population in question satisfies our various simplifying assumptions. Our modelling approach will be useful for empiricists for monitoring groups within a conservation framework and also theoreticians wanting to quantify interactions, to study cooperation and other phenomena within social populations.
Generalized approximate message passing (GAMP) is a computationally efficient algorithm for estimating an unknown signal $w_0\in\mathbb{R}^N$ from a random linear measurement $y= Xw_0 + \epsilon\in\mathbb{R}^M$, where $X\in\mathbb{R}^{M\times N}$ is a known measurement matrix and $\epsilon$ is the noise vector. The salient feature of GAMP is that it can provide an unbiased estimator $\hat{r}^{\rm G}\sim\mathcal{N}(w_0, \hat{s}^2I_N)$, which can be used for various hypothesis-testing methods. In this study, we consider the bootstrap average of an unbiased estimator of GAMP for the elastic net. By numerically analyzing the state evolution of \emph{approximate message passing with resampling}, which has been proposed for computing bootstrap statistics of the elastic net estimator, we investigate when the bootstrap averaging reduces the variance of the unbiased estimator and the effect of optimizing the size of each bootstrap sample and hyperparameter of the elastic net regularization in the asymptotic setting $M, N\to\infty, M/N\to\alpha\in(0,\infty)$. The results indicate that bootstrap averaging effectively reduces the variance of the unbiased estimator when the actual data generation process is inconsistent with the sparsity assumption of the regularization and the sample size is small. Furthermore, we find that when $w_0$ is less sparse, and the data size is small, the system undergoes a phase transition. The phase transition indicates the existence of the region where the ensemble average of unbiased estimators of GAMP for the elastic net norm minimization problem yields the unbiased estimator with the minimum variance.
We give a separation bound for an isolated multiple root $x$ of a square multivariate analytic system $f$ satisfying that an operator deduced by adding $Df(x)$ and a projection of $D^2f(x)$ in a direction of the kernel of $Df(x)$ is invertible. We prove that the deflation process applied on $f$ and this kind of roots terminates after only one iteration. When $x$ is only given approximately, we give a numerical criterion for isolating a cluster of zeros of $f$ near $x$. We also propose a lower bound of the number of roots in the cluster.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.