亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a new parameter, called stretch-width, that we show sits strictly between clique-width and twin-width. Unlike the reduced parameters [BKW '22], planar graphs and polynomial subdivisions do not have bounded stretch-width. This leaves open the possibility of efficient algorithms for a broad fragment of problems within Monadic Second-Order (MSO) logic on graphs of bounded stretch-width. In this direction, we prove that graphs of bounded maximum degree and bounded stretch-width have at most logarithmic treewidth. As a consequence, in classes of bounded stretch-width, Maximum Independent Set can be solved in subexponential time $2^{O(n^{4/5} \log n)}$ on $n$-vertex graphs, and, if further the maximum degree is bounded, Existential Counting Modal Logic [Pilipczuk '11] can be model-checked in polynomial time. We also give a polynomial-time $O(\text{OPT}^2)$-approximation for the stretch-width of symmetric $0,1$-matrices or ordered graphs. Somewhat unexpectedly, we prove that exponential subdivisions of bounded-degree graphs have bounded stretch-width. This allows to complement the logarithmic upper bound of treewidth with a matching lower bound. We leave as open the existence of an efficient approximation algorithm for the stretch-width of unordered graphs, if the exponential subdivisions of all graphs have bounded stretch-width, and if graphs of bounded stretch-width have logarithmic clique-width (or rank-width).

相關內容

We study streaming algorithms in the white-box adversarial stream model, where the internal state of the streaming algorithm is revealed to an adversary who adaptively generates the stream updates, but the algorithm obtains fresh randomness unknown to the adversary at each time step. We incorporate cryptographic assumptions to construct robust algorithms against such adversaries. We propose efficient algorithms for sparse recovery of vectors, low rank recovery of matrices and tensors, as well as low rank plus sparse recovery of matrices, i.e., robust PCA. Unlike deterministic algorithms, our algorithms can report when the input is not sparse or low rank even in the presence of such an adversary. We use these recovery algorithms to improve upon and solve new problems in numerical linear algebra and combinatorial optimization on white-box adversarial streams. For example, we give the first efficient algorithm for outputting a matching in a graph with insertions and deletions to its edges provided the matching size is small, and otherwise we declare the matching size is large. We also improve the approximation versus memory tradeoff of previous work for estimating the number of non-zero elements in a vector and computing the matrix rank.

A spanner of a graph is a subgraph that preserves lengths of shortest paths up to a multiplicative distortion. For every $k$, a spanner with size $O(n^{1+1/k})$ and stretch $(2k+1)$ can be constructed by a simple centralized greedy algorithm, and this is tight assuming Erd\H{o}s girth conjecture. In this paper we study the problem of constructing spanners in a local manner, specifically in the Local Computation Model proposed by Rubinfeld et al. (ICS 2011). We provide a randomized Local Computation Agorithm (LCA) for constructing $(2r-1)$-spanners with $\tilde{O}(n^{1+1/r})$ edges and probe complexity of $\tilde{O}(n^{1-1/r})$ for $r \in \{2,3\}$, where $n$ denotes the number of vertices in the input graph. Up to polylogarithmic factors, in both cases, the stretch factor is optimal (for the respective number of edges). In addition, our probe complexity for $r=2$, i.e., for constructing a $3$-spanner, is optimal up to polylogarithmic factors. Our result improves over the probe complexity of Parter et al. (ITCS 2019) that is $\tilde{O}(n^{1-1/2r})$ for $r \in \{2,3\}$. Both our algorithms and the algorithms of Parter et al. use a combination of neighbor-probes and pair-probes in the above-mentioned LCAs. For general $k\geq 1$, we provide an LCA for constructing $O(k^2)$-spanners with $\tilde{O}(n^{1+1/k})$ edges using $O(n^{2/3}\Delta^2)$ neighbor-probes, improving over the $\tilde{O}(n^{2/3}\Delta^4)$ algorithm of Parter et al. By developing a new randomized LCA for graph decomposition, we further improve the probe complexity of the latter task to be $O(n^{2/3-(1.5-\alpha)/k}\Delta^2)$, for any constant $\alpha>0$. This latter LCA may be of independent interest.

We introduce monoidal width as a measure of complexity for morphisms in monoidal categories. Inspired by well-known structural width measures for graphs, like tree width and rank width, monoidal width is based on a notion of syntactic decomposition: a monoidal decomposition of a morphism is an expression in the language of monoidal categories, where operations are monoidal products and compositions, that specifies this morphism. Monoidal width penalises the composition operation along ``big'' objects, while it encourages the use of monoidal products. We show that, by choosing the correct categorical algebra for decomposing graphs, we can capture tree width and rank width. For matrices, monoidal width is related to the rank. These examples suggest monoidal width as a good measure for structural complexity of processes modelled as morphisms in monoidal categories.

The Independent Cutset problem asks whether there is a set of vertices in a given graph that is both independent and a cutset. Such a problem is $\textsf{NP}$-complete even when the input graph is planar and has maximum degree five. In this paper, we first present a $\mathcal{O}^*(1.4423^{n})$-time algorithm for the problem. We also show how to compute a minimum independent cutset (if any) in the same running time. Since the property of having an independent cutset is MSO$_1$-expressible, our main results are concerned with structural parameterizations for the problem considering parameters that are not bounded by a function of the clique-width of the input. We present $\textsf{FPT}$-time algorithms for the problem considering the following parameters: the dual of the maximum degree, the dual of the solution size, the size of a dominating set (where a dominating set is given as an additional input), the size of an odd cycle transversal, the distance to chordal graphs, and the distance to $P_5$-free graphs. We close by introducing the notion of $\alpha$-domination, which allows us to identify more fixed-parameter tractable and polynomial-time solvable cases.

Maximum weight independent set (MWIS) admits a $\frac1k$-approximation in inductively $k$-independent graphs and a $\frac{1}{2k}$-approximation in $k$-perfectly orientable graphs. These are a a parameterized class of graphs that generalize $k$-degenerate graphs, chordal graphs, and intersection graphs of various geometric shapes such as intervals, pseudo-disks, and several others. We consider a generalization of MWIS to a submodular objective. Given a graph $G=(V,E)$ and a non-negative submodular function $f: 2^V \rightarrow \mathbb{R}_+$, the goal is to approximately solve $\max_{S \in \mathcal{I}_G} f(S)$ where $\mathcal{I}_G$ is the set of independent sets of $G$. We obtain an $\Omega(\frac1k)$-approximation for this problem in the two mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple contention resolution scheme, and this results in a randomized algorithm with approximation ratio at least $\frac{1}{e(k+1)}$. This approach also yields parallel (or low-adaptivity) approximations. Motivated by the goal of designing efficient and deterministic algorithms, we describe two other algorithms for inductively $k$-independent graphs that are inspired by work on streaming algorithms: a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster, these algorithms, in the monotone submodular case, yield the first deterministic constant factor approximations for various special cases that have been previously considered such as intersection graphs of intervals, disks and pseudo-disks.

Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomass\'e and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows to solve many otherwise hard problems efficiently. Our paper focuses on a comparison of twin-width to the more traditional tree-width on sparse graphs. Namely, we prove that if a graph $G$ of twin-width at most $2$ contains no $K_{t,t}$ subgraph for some integer $t$, then the tree-width of $G$ is bounded by a polynomial function of $t$. As a consequence, for any sparse graph class $\mathcal{C}$ we obtain a polynomial time algorithm which for any input graph $G \in \mathcal{C}$ either outputs a contraction sequence of width at most $c$ (where $c$ depends only on $\mathcal{C}$), or correctly outputs that $G$ has twin-width more than $2$. On the other hand, we present an easy example of a graph class of twin-width $3$ with unbounded tree-width, showing that our result cannot be extended to higher values of twin-width.

A graph $H$ is a clique graph if $H$ is a vertex-disjoin union of cliques. Abu-Khzam (2017) introduced the $(a,d)$-{Cluster Editing} problem, where for fixed natural numbers $a,d$, given a graph $G$ and vertex-weights $a^*:\ V(G)\rightarrow \{0,1,\dots, a\}$ and $d^*{}:\ V(G)\rightarrow \{0,1,\dots, d\}$, we are to decide whether $G$ can be turned into a cluster graph by deleting at most $d^*(v)$ edges incident to every $v\in V(G)$ and adding at most $a^*(v)$ edges incident to every $v\in V(G)$. Results by Komusiewicz and Uhlmann (2012) and Abu-Khzam (2017) provided a dichotomy of complexity (in P or NP-complete) of $(a,d)$-{Cluster Editing} for all pairs $a,d$ apart from $a=d=1.$ Abu-Khzam (2017) conjectured that $(1,1)$-{Cluster Editing} is in P. We resolve Abu-Khzam's conjecture in affirmative by (i) providing a serious of five polynomial-time reductions to $C_3$-free and $C_4$-free graphs of maximum degree at most 3, and (ii) designing a polynomial-time algorithm for solving $(1,1)$-{Cluster Editing} on $C_3$-free and $C_4$-free graphs of maximum degree at most 3.

The directed acyclic word graph (DAWG) of a string $y$ of length $n$ is the smallest (partial) DFA which recognizes all suffixes of $y$ with only $O(n)$ nodes and edges. In this paper, we show how to construct the DAWG for the input string $y$ from the suffix tree for $y$, in $O(n)$ time for integer alphabets of polynomial size in $n$. In so doing, we first describe a folklore algorithm which, given the suffix tree for $y$, constructs the DAWG for the reversed string of $y$ in $O(n)$ time. Then, we present our algorithm that builds the DAWG for $y$ in $O(n)$ time for integer alphabets, from the suffix tree for $y$. We also show that a straightforward modification to our DAWG construction algorithm leads to the first $O(n)$-time algorithm for constructing the affix tree of a given string $y$ over an integer alphabet. Affix trees are a text indexing structure supporting bidirectional pattern searches. We then discuss how our constructions can lead to linear-time algorithms for building other text indexing structures, such as linear-size suffix tries and symmetric CDAWGs in linear time in the case of integer alphabets. As a further application to our $O(n)$-time DAWG construction algorithm, we show that the set $\mathsf{MAW}(y)$ of all minimal absent words (MAWs) of $y$ can be computed in optimal, input- and output-sensitive $O(n + |\mathsf{MAW}(y)|)$ time and $O(n)$ working space for integer alphabets.

Sliding suffix trees (Fiala & Greene, 1989) for an input text $T$ over an alphabet of size $\sigma$ and a sliding window $W$ of $T$ can be maintained in $O(|T| \log \sigma)$ time and $O(|W|)$ space. The two previous approaches that achieve this can be categorized into the credit-based approach of Fiala and Greene (1989) and Larsson (1996, 1999), or the batch-based approach proposed by Senft (2005). Brodnik and Jekovec (2018) showed that the sliding suffix tree can be supplemented with leaf pointers in order to find all occurrences of an online query pattern in the current window, and that leaf pointers can be maintained by credit-based arguments as well. The main difficulty in the credit-based approach is in the maintenance of index-pairs that represent each edge. In this paper, we show that valid edge index-pairs can be derived in constant time from leaf pointers, thus reducing the maintenance of edge index-pairs to the maintenance of leaf pointers. We further propose a new simple method which maintains leaf pointers without using credit-based arguments. Our algorithm and proof of correctness are much simpler compared to the credit-based approach, whose analyses were initially flawed (Senft 2005).

Let tw(G) denote the treewidth of graph G. Given a graph G and a positive integer k such that tw(G) <= k + 1, we are to decide if tw(G) <= k. We give a certifying algorithm RTW ("R" for recursive) for this task: it returns one or more tree-decompositions of G of width <= k if the answer is YES and a minimal contraction H of G such that tw(H) > k otherwise. RTW uses a heuristic variant of Tamaki's PID algorithm for treewidth (ESA2017), which we call HPID. RTW, given G and k, interleaves the execution of HPID with recursive calls on G /e for edges e of G, where G / e denotes the graph obtained from G by contracting edge e. If we find that tw(G / e) > k, then we have tw(G) > k with the same certificate. If we find that tw(G / e) <= k, we "uncontract" the bags of the certifying tree-decompositions of G / e into bags of G and feed them to HPID to help progress. If the question is not resolved after the recursive calls are made for all edges, we finish HPID in an exhaustive mode. If it turns out that tw(G) > k, then G is a certificate for tw(G') > k for every G' of which G is a contraction, because we have found tw(G / e) <= k for every edge e of G. This final round of HPID guarantees the correctness of the algorithm, while its practical efficiency derives from our methods of "uncontracting" bags of tree-decompositions of G / e to useful bags of G, as well as of exploiting those bags in HPID. Experiments show that our algorithm drastically extends the scope of practically solvable instances. In particular, when applied to the 100 instances in the PACE 2017 bonus set, the number of instances solved by our implementation on a typical laptop, with the timeout of 100, 1000, and 10000 seconds per instance, are 72, 92, and 98 respectively, while these numbers are 11, 38, and 68 for Tamaki's PID solver and 65, 82, and 85 for his new solver (SEA 2022).

北京阿比特科技有限公司