亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider parameterized concurrent systems consisting of a finite but unknown number of components, obtained by replicating a given set of finite state automata. Components communicate by executing atomic interactions whose participants update their states simultaneously. We introduce an interaction logic to specify both the type of interactions (e.g.\ rendez-vous, broadcast) and the topology of the system (e.g.\ pipeline, ring). The logic can be easily embedded in monadic second order logic of finitely many successors, and is therefore decidable. Proving safety properties of such a parameterized system, like deadlock freedom or mutual exclusion, requires to infer an inductive invariant that contains all reachable states of all system instances, and no unsafe state. We present a method to automatically synthesize inductive invariants directly from the formula describing the interactions, without costly fixed point iterations. We experimentally prove that this invariant is strong enough to verify safety properties of a large number of systems including textbook examples (dining philosophers, synchronization schemes), classical mutual exclusion algorithms, cache-coherence protocols and self-stabilization algorithms, for an arbitrary number of components.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 約束 · Oracle · SimPLe · ·
2021 年 10 月 28 日

Word equations are a crucial element in the theoretical foundation of constraint solving over strings. A word equation relates two words over string variables and constants. Its solution amounts to a function mapping variables to constant strings that equate the left and right hand sides of the equation. While the problem of solving word equations is decidable, the decidability of the problem of solving a word equation with a length constraint (i.e., a constraint relating the lengths of words in the word equation) has remained a long-standing open problem. We focus on the subclass of quadratic word equations, i.e., in which each variable occurs at most twice. We first show that the length abstractions of solutions to quadratic word equations are in general not Presburger-definable. We then describe a class of counter systems with Presburger transition relations which capture the length abstraction of a quadratic word equation with regular constraints. We provide an encoding of the effect of a simple loop of the counter systems in the existential theory of Presburger Arithmetic with divisibility (PAD). Since PAD is decidable (NP-hard and is in NEXP), we obtain a decision procedure for quadratic words equations with length constraints for which the associated counter system is flat (i.e., all nodes belong to at most one cycle). In particular, we show a decidability result (in fact, also an NP algorithm with a PAD oracle) for a recently proposed NP-complete fragment of word equations called regular-oriented word equations, when augmented with length constraints. We extend this decidability result (in fact, with a complexity upper bound of PSPACE with a PAD oracle) in the presence of regular constraints.

Subexponential parameterized algorithms are known for a wide range of natural problems on planar graphs, but the techniques are usually highly problem specific. The goal of this paper is to introduce a framework for obtaining $n^{O(\sqrt{k})}$ time algorithms for a family of graph modification problems that includes problems that can be seen as generalized cycle hitting problems. Our starting point is the Node Unique Label Cover problem (that is, given a CSP instance where each constraint is a permutation of values on two variables, the task is to delete $k$ variables to make the instance satisfiable). We introduce a variant of the problem where $k$ vertices have to be deleted such that every 2-connected component of the remaining instance is satisfiable. Then we extend the problem with cardinality constraints that restrict the number of times a certain value can be used (globally or within a 2-connected component of the solution). We show that there is an $n^{O(\sqrt{k})}$ time algorithm on planar graphs for any problem that can be formulated this way, which includes a large number of well-studied problems, for example, Odd Cycle Transversal, Subset Feedback Vertex Set, Group Feedback Vertex Set, Subset Group Feedback Vertex Set, Vertex Multiway Cut, and Component Order Connectivity. For those problems that admit appropriate (quasi)polynomial kernels (that increase the parameter only linearly and preserve planarity), our results immediately imply $2^{O(\sqrt{k}\cdot\operatorname{polylog}(k))}n^{O(1)}$ time parameterized algorithms on planar graphs. In particular, we use or adapt known kernelization results to obtain $2^{O(\sqrt{k}\cdot \operatorname{polylog}(k))} n^{O(1)}$ time (randomized) algorithms for Vertex Multiway Cut, Group Feedback Vertex Set, and Subset Feedback Vertex Set.

Despite their tremendous successes, convolutional neural networks (CNNs) incur high computational/storage costs and are vulnerable to adversarial perturbations. Recent works on robust model compression address these challenges by combining model compression techniques with adversarial training. But these methods are unable to improve throughput (frames-per-second) on real-life hardware while simultaneously preserving robustness to adversarial perturbations. To overcome this problem, we propose the method of Generalized Depthwise-Separable (GDWS) convolution -- an efficient, universal, post-training approximation of a standard 2D convolution. GDWS dramatically improves the throughput of a standard pre-trained network on real-life hardware while preserving its robustness. Lastly, GDWS is scalable to large problem sizes since it operates on pre-trained models and doesn't require any additional training. We establish the optimality of GDWS as a 2D convolution approximator and present exact algorithms for constructing optimal GDWS convolutions under complexity and error constraints. We demonstrate the effectiveness of GDWS via extensive experiments on CIFAR-10, SVHN, and ImageNet datasets. Our code can be found at //github.com/hsndbk4/GDWS.

Estimation of parameters in differential equation models can be achieved by applying learning algorithms to quantitative time-series data. However, sometimes it is only possible to measure qualitative changes of a system in response to a controlled condition. In dynamical systems theory, such change points are known as bifurcations and lie on a function of the controlled condition called the bifurcation diagram. In this work, we propose a gradient-based approach for inferring the parameters of differential equations that produce a user-specified bifurcation diagram. The cost function contains an error term that is minimal when the model bifurcations match the specified targets and a bifurcation measure which has gradients that push optimisers towards bifurcating parameter regimes. The gradients can be computed without the need to differentiate through the operations of the solver that was used to compute the diagram. We demonstrate parameter inference with minimal models which explore the space of saddle-node and pitchfork diagrams and the genetic toggle switch from synthetic biology. Furthermore, the cost landscape allows us to organise models in terms of topological and geometric equivalence.

The combination of neural network potential (NNP) with molecular simulations plays an important role in an efficient and thorough understanding of a molecular system's potential energy surface (PES). However, grasping the interplay between input features and their local contribution to NNP is growingly evasive due to heavy featurization. In this work, we suggest an end-to-end model which directly predicts per-atom energy from the coordinates of particles, avoiding expert-guided featurization of the network input. Employing self-attention as the main workhorse, our model is intrinsically equivariant under the permutation operation, resulting in the invariance of the total potential energy. We tested our model against several challenges in molecular simulation problems, including periodic boundary condition (PBC), $n$-body interaction, and binary composition. Our model yielded stable predictions in all tested systems with errors significantly smaller than the potential energy fluctuation acquired from molecular dynamics simulations. Thus, our work provides a minimal baseline model that encodes complex interactions in a condensed phase system to facilitate the data-driven analysis of physicochemical systems.

Real-time transmission line outage detection is difficult because of partial phasor measurement unit (PMU) deployment and varying outage signal strength. Existing detection approaches focus on monitoring PMU-measured nodal algebraic states, i.e., voltage phase angle and magnitude. The success of such approaches, however, is largely predicated on strong outage signals and the presence of PMUs in the outage location's vicinity. To overcome these limitations, a unified framework is proposed in this work by utilizing both nodal voltage information and generator dynamic states, e.g., rotor angular position. The proposed scheme is shown to be faster and more robust to unknown outage locations through the incorporation of generator dynamics. Using the IEEE 39-bus system simulation data, the proposed scheme's properties and performances compared to existing approaches are presented. The new approach could help improve operators' real-time situational awareness by detecting outages faster and providing a breakdown of outage signals for diagnostic purposes, making future power systems more resilient.

We present a variational method for online state estimation and parameter learning in state-space models (SSMs), a ubiquitous class of latent variable models for sequential data. As per standard batch variational techniques, we use stochastic gradients to simultaneously optimize a lower bound on the log evidence with respect to both model parameters and a variational approximation of the states' posterior distribution. However, unlike existing approaches, our method is able to operate in an entirely online manner, such that historic observations do not require revisitation after being incorporated and the cost of updates at each time step remains constant, despite the growing dimensionality of the joint posterior distribution of the states. This is achieved by utilizing backward decompositions of this joint posterior distribution and of its variational approximation, combined with Bellman-type recursions for the evidence lower bound and its gradients. We demonstrate the performance of this methodology across several examples, including high-dimensional SSMs and sequential Variational Auto-Encoders.

This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs). In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance. In addition, whereas existing methods are limited to equivariance on 3 dimensional spaces, our model is easily scaled to higher-dimensional spaces. We demonstrate the effectiveness of our method on dynamical systems modelling, representation learning in graph autoencoders and predicting molecular properties.

Graph Neural Networks (GNN) come in many flavors, but should always be either invariant (permutation of the nodes of the input graph does not affect the output) or equivariant (permutation of the input permutes the output). In this paper, we consider a specific class of invariant and equivariant networks, for which we prove new universality theorems. More precisely, we consider networks with a single hidden layer, obtained by summing channels formed by applying an equivariant linear operator, a pointwise non-linearity and either an invariant or equivariant linear operator. Recently, Maron et al. (2019) showed that by allowing higher-order tensorization inside the network, universal invariant GNNs can be obtained. As a first contribution, we propose an alternative proof of this result, which relies on the Stone-Weierstrass theorem for algebra of real-valued functions. Our main contribution is then an extension of this result to the equivariant case, which appears in many practical applications but has been less studied from a theoretical point of view. The proof relies on a new generalized Stone-Weierstrass theorem for algebra of equivariant functions, which is of independent interest. Finally, unlike many previous settings that consider a fixed number of nodes, our results show that a GNN defined by a single set of parameters can approximate uniformly well a function defined on graphs of varying size.

We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.

北京阿比特科技有限公司