亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an additive approach for the inverse design of kirigami-based mechanical metamaterials by focusing on the empty (negative) spaces instead of the solid tiles. By considering each negative space as a four-bar linkage, we identify a simple recursive relationship between adjacent linkages, yielding an efficient method for creating kirigami patterns. This allows us to solve the kirigami design problem using elementary linear algebra, with compatibility, reconfigurability and rigid-deployability encoded into an iterative procedure involving simple matrix multiplications. The resulting linear design strategy circumvents the solution of a non-convex global optimization problem and allows us to control the degrees of freedom in the deployment angle field, linkage offsets and boundary conditions. We demonstrate this by creating a large variety of rigid-deployable, compact, reconfigurable kirigami patterns. We then realize our kirigami designs physically using two simple but effective fabrication strategies with very different materials. All together, our additive approaches present routes for efficient mechanical metamaterial design and fabrication based on ori/kiri-gami art forms.

相關內容

Remarkable progress has been made on automated reasoning with natural text, by using Language Models (LMs) and methods such as Chain-of-Thought and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from the intended conclusion to supporting axioms) is significantly more efficient at proof-finding. Importing this intuition into the LM setting, we develop a Backward Chaining algorithm, called LAMBADA, that decomposes reasoning into four sub-modules. These sub-modules are simply implemented by few-shot prompted LM inference. We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods on challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.

Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization algorithms. While it is widely acknowledged that quantum computers should augment classical computers, rather than replace them entirely, comparatively little attention has been directed toward deriving analytical characterizations of their interactions. In this paper, we present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs (MBQP) via Ising solvers. We show the exactness of a convex copositive reformulation of MBQPs, allowing the resulting reformulation to inherit the straightforward analysis of convex optimization. We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm. Using existing complexity results for convex cutting-plane algorithms, we deduce that the classical portion of this hybrid framework is guaranteed to be polynomial time. This suggests that when applied to NP-hard problems, the complexity of the solution is shifted onto the subroutine handled by the Ising solver.

Although haptic sensing has recently been used for legged robot localization in extreme environments where a camera or LiDAR might fail, the problem of efficiently representing the haptic signatures in a learned prior map is still open. This paper introduces an approach to terrain representation for haptic localization inspired by recent trends in machine learning. It combines this approach with the proven Monte Carlo algorithm to obtain an accurate, computation-efficient, and practical method for localizing legged robots under adversarial environmental conditions. We apply the triplet loss concept to learn highly descriptive embeddings in a transformer-based neural network. As the training haptic data are not labeled, the positive and negative examples are discriminated by their geometric locations discovered while training. We demonstrate experimentally that the proposed approach outperforms by a large margin the previous solutions to haptic localization of legged robots concerning the accuracy, inference time, and the amount of data stored in the map. As far as we know, this is the first approach that completely removes the need to use a dense terrain map for accurate haptic localization, thus paving the way to practical applications.

Multiparty session types (MSTs) are a type-based approach to verifying communication protocols. Central to MSTs is a projection operator: a partial function that maps protocols represented as global types to correct-by-construction implementations for each participant, represented as a communicating state machine. Existing projection operators are syntactic in nature, and trade efficiency for completeness. We present the first projection operator that is sound, complete, and efficient. Our projection separates synthesis from checking implementability. For synthesis, we use a simple automata-theoretic construction; for checking implementability, we present succinct conditions that summarize insights into the property of implementability. We use these conditions to show that MST implementability is PSPACE-complete. This improves upon a previous decision procedure that is in EXPSPACE and applies to a smaller class of MSTs. We demonstrate the effectiveness of our approach using a prototype implementation, which handles global types not supported by previous work without sacrificing performance.

We present an additive approach for the inverse design of kirigami-based mechanical metamaterials by focusing on the empty (negative) spaces instead of the solid tiles. By considering each negative space as a four-bar linkage, we identify a simple recursive relationship between adjacent linkages, yielding an efficient method for creating kirigami patterns. This allows us to solve the kirigami design problem using elementary linear algebra, with compatibility, reconfigurability and rigid-deployability encoded into an iterative procedure involving simple matrix multiplications. The resulting linear design strategy circumvents the solution of a non-convex global optimization problem and allows us to control the degrees of freedom in the deployment angle field, linkage offsets and boundary conditions. We demonstrate this by creating a large variety of rigid-deployable, compact, reconfigurable kirigami patterns. We then realize our kirigami designs physically using two simple but effective fabrication strategies with very different materials. Altogether, our additive approaches present routes for efficient mechanical metamaterial design and fabrication based on ori/kirigami art forms.

We continue our investigation of finite deformation linear viscoelastodynamics by focusing on constructing accurate and reliable numerical schemes. The concrete thermomechanical foundation developed in the previous study paves the way for pursuing discrete formulations with critical physical and mathematical structures preserved. Energy stability, momentum conservation, and temporal accuracy constitute the primary factors in our algorithm design. For inelastic materials, the directionality condition, a property for the stress to be energy consistent, is extended with the dissipation effect taken into account. Moreover, the integration of the constitutive relations calls for an algorithm design of the internal state variables and their conjugate variables. A directionality condition for the conjugate variables is introduced as an indispensable ingredient for ensuring physically correct numerical dissipation. By leveraging the particular structure of the configurational free energy, a set of update formulas for the internal state variables is obtained. Detailed analysis reveals that the overall discrete schemes are energy-momentum consistent and achieve first- and second-order accuracy in time, respectively. Numerical examples are provided to justify the appealing features of the proposed methodology.

The task of maximizing a monotone submodular function under a cardinality constraint is at the core of many machine learning and data mining applications, including data summarization, sparse regression and coverage problems. We study this classic problem in the fully dynamic setting, where elements can be both inserted and removed. Our main result is a randomized algorithm that maintains an efficient data structure with a poly-logarithmic amortized update time and yields a $(1/2-\epsilon)$-approximate solution. We complement our theoretical analysis with an empirical study of the performance of our algorithm.

Outcome phenotype measurement error is rarely corrected in comparative effect estimation studies in observational pharmacoepidemiology. Quantitative bias analysis (QBA) is a misclassification correction method that algebraically adjusts person counts in exposure-outcome contingency tables to reflect the magnitude of misclassification. The extent QBA minimizes bias is unclear because few systematic evaluations have been reported. We empirically evaluated QBA impact on odds ratios (OR) in several comparative effect estimation scenarios. We estimated non-differential and differential phenotype errors with internal validation studies using a probabilistic reference. Further, we synthesized an analytic space defined by outcome incidence, uncorrected ORs, and phenotype errors to identify which combinations produce invalid results indicative of input errors. We evaluated impact with relative bias [(OR-ORQBA)]/OR*100%]. Results were considered invalid if any contingency table cell was corrected to a negative number. Empirical bias correction was greatest in lower incidence scenarios where uncorrected ORs were larger. Similarly, synthetic bias correction was greater in lower incidence settings with larger uncorrected estimates. The invalid proportion of synthetic scenarios increased as uncorrected estimates increased. Results were invalid in common, low incidence scenarios indicating problematic inputs. This demonstrates the importance of accurately and precisely estimating phenotype errors before implementing QBA in comparative effect estimation studies.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.

北京阿比特科技有限公司