Federated learning (FL) is experiencing a fast booming with the wave of distributed machine learning and ever-increasing privacy concerns. In the FL paradigm, global model aggregation is handled by a centralized aggregate server based on local updated gradients trained on local nodes, which mitigates privacy leakage caused by the collection of sensitive information. With the increased computing and communicating capabilities of edge and IoT devices, applying FL on heterogeneous devices to train machine learning models becomes a trend. The synchronous aggregation strategy in the classic FL paradigm cannot effectively use the resources, especially on heterogeneous devices, due to its waiting for straggler devices before aggregation in each training round. Furthermore, in real-world scenarios, the disparity of data dispersed on devices (i.e. data heterogeneity) downgrades the accuracy of models. As a result, many asynchronous FL (AFL) paradigms are presented in various application scenarios to improve efficiency, performance, privacy, and security. This survey comprehensively analyzes and summarizes existing variants of AFL according to a novel classification mechanism, including device heterogeneity, data heterogeneity, privacy and security on heterogeneous devices, and applications on heterogeneous devices. Finally, this survey reveals rising challenges and presents potentially promising research directions in this under-investigated field.
Fog computing is introduced by shifting cloud resources towards the users' proximity to mitigate the limitations possessed by cloud computing. Fog environment made its limited resource available to a large number of users to deploy their serverless applications, composed of several serverless functions. One of the primary intentions behind introducing the fog environment is to fulfil the demand of latency and location-sensitive serverless applications through its limited resources. The recent research mainly focuses on assigning maximum resources to such applications from the fog node and not taking full advantage of the cloud environment. This introduces a negative impact in providing the resources to a maximum number of connected users. To address this issue, in this paper, we investigated the optimum percentage of a user's request that should be fulfilled by fog and cloud. As a result, we proposed DeF-DReL, a Systematic Deployment of Serverless Functions in Fog and Cloud environments using Deep Reinforcement Learning, using several real-life parameters, such as distance and latency of the users from nearby fog node, user's priority, the priority of the serverless applications and their resource demand, etc. The performance of the DeF-DReL algorithm is further compared with recent related algorithms. From the simulation and comparison results, its superiority over other algorithms and its applicability to the real-life scenario can be clearly observed.
Federated learning is an emerging privacy-preserving AI technique where clients (i.e., organisations or devices) train models locally and formulate a global model based on the local model updates without transferring local data externally. However, federated learning systems struggle to achieve trustworthiness and embody responsible AI principles. In particular, federated learning systems face accountability and fairness challenges due to multi-stakeholder involvement and heterogeneity in client data distribution. To enhance the accountability and fairness of federated learning systems, we present a blockchain-based trustworthy federated learning architecture. We first design a smart contract-based data-model provenance registry to enable accountability. Additionally, we propose a weighted fair data sampler algorithm to enhance fairness in training data. We evaluate the proposed approach using a COVID-19 X-ray detection use case. The evaluation results show that the approach is feasible to enable accountability and improve fairness. The proposed algorithm can achieve better performance than the default federated learning setting in terms of the model's generalisation and accuracy.
Many researchers are trying to replace the aggregation server in federated learning with a blockchain system to achieve better privacy, robustness and scalability. In this case, clients will upload their updated models to the blockchain ledger, and use a smart contract on the blockchain system to perform model averaging. However, running machine learning applications on the blockchain is almost impossible because a blockchain system, which usually takes over half minute to generate a block, is extremely slow and unable to support machine learning applications. This paper proposes a completely new public blockchain architecture called DFL, which is specially optimized for distributed federated machine learning. This architecture inherits most traditional blockchain merits and achieves extremely high performance with low resource consumption by waiving global consensus. To characterize the performance and robustness of our architecture, we implement the architecture as a prototype and test it on a physical four-node network. To test more nodes and more complex situations, we build a simulator to simulate the network. The LeNet results indicate our system can reach over 90% accuracy for non-I.I.D. datasets even while facing model poisoning attacks, with the blockchain consuming less than 5% of hardware resources.
Multi-agent teaming achieves better performance when there is communication among participating agents allowing them to coordinate their actions for maximizing shared utility. However, when collaborating a team of agents with different action and observation spaces, information sharing is not straightforward and requires customized communication protocols, depending on sender and receiver types. Without properly modeling such heterogeneity in agents, communication becomes less helpful and could even deteriorate the multi-agent cooperation performance. We propose heterogeneous graph attention networks, called HetNet, to learn efficient and diverse communication models for coordinating heterogeneous agents towards accomplishing tasks that are of collaborative nature. We propose a Multi-Agent Heterogeneous Actor-Critic (MAHAC) learning paradigm to obtain collaborative per-class policies and effective communication protocols for composite robot teams. Our proposed framework is evaluated against multiple baselines in a complex environment in which agents of different types must communicate and cooperate to satisfy the objectives. Experimental results show that HetNet outperforms the baselines in learning sophisticated multi-agent communication protocols by achieving $\sim$10\% improvements in performance metrics.
Federated learning (FL) is an emerging privacy-preserving paradigm, where a global model is trained at a central server while keeping client data local. However, FL can still indirectly leak private client information through model updates during training. Differential privacy (DP) can be employed to provide privacy guarantees within FL, typically at the cost of degraded final trained model. In this work, we consider a heterogeneous DP setup where clients are considered private by default, but some might choose to opt out of DP. We propose a new algorithm for federated learning with opt-out DP, referred to as \emph{FeO2}, along with a discussion on its advantages compared to the baselines of private and personalized FL algorithms. We prove that the server-side and client-side procedures in \emph{FeO2} are optimal for a simplified linear problem. We also analyze the incentive for opting out of DP in terms of performance gain. Through numerical experiments, we show that \emph{FeO2} provides up to $9.27\%$ performance gain in the global model compared to the baseline DP FL for the considered datasets. Additionally, we show a gap in the average performance of personalized models between non-private and private clients of up to $3.49\%$, empirically illustrating an incentive for clients to opt out.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.
Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.