The escalating complexity of micro-services architecture in cloud-native technologies poses significant challenges for maintaining system stability and efficiency. To conduct root cause analysis (RCA) and resolution of alert events, we propose a pioneering framework, multi-Agent Blockchain-inspired Collaboration for root cause analysis in micro-services architecture (mABC), to revolutionize the AI for IT operations (AIOps) domain, where multiple agents based on the powerful large language models (LLMs) perform blockchain-inspired voting to reach a final agreement following a standardized process for processing tasks and queries provided by Agent Workflow. Specifically, seven specialized agents derived from Agent Workflow each provide valuable insights towards root cause analysis based on their expertise and the intrinsic software knowledge of LLMs collaborating within a decentralized chain. To avoid potential instability issues in LLMs and fully leverage the transparent and egalitarian advantages inherent in a decentralized structure, mABC adopts a decision-making process inspired by blockchain governance principles while considering the contribution index and expertise index of each agent. Experimental results on the public benchmark AIOps challenge dataset and our created train-ticket dataset demonstrate superior performance in accurately identifying root causes and formulating effective solutions, compared to previous strong baselines. The ablation study further highlights the significance of each component within mABC, with Agent Workflow, multi-agent, and blockchain-inspired voting being crucial for achieving optimal performance. mABC offers a comprehensive automated root cause analysis and resolution in micro-services architecture and achieves a significant improvement in the AIOps domain compared to existing baselines
Power grids are critical infrastructures of paramount importance to modern society and, therefore, engineered to operate under diverse conditions and failures. The ongoing energy transition poses new challenges for the decision-makers and system operators. Therefore, we must develop grid analysis algorithms to ensure reliable operations. These key tools include power flow analysis and system security analysis, both needed for effective operational and strategic planning. The literature review shows a growing trend of machine learning (ML) models that perform these analyses effectively. In particular, Graph Neural Networks (GNNs) stand out in such applications because of the graph-based structure of power grids. However, there is a lack of publicly available graph datasets for training and benchmarking ML models in electrical power grid applications. First, we present PowerGraph, which comprises GNN-tailored datasets for i) power flows, ii) optimal power flows, and iii) cascading failure analyses of power grids. Second, we provide ground-truth explanations for the cascading failure analysis. Finally, we perform a complete benchmarking of GNN methods for node-level and graph-level tasks and explainability. Overall, PowerGraph is a multifaceted GNN dataset for diverse tasks that includes power flow and fault scenarios with real-world explanations, providing a valuable resource for developing improved GNN models for node-level, graph-level tasks and explainability methods in power system modeling. The dataset is available at //figshare.com/articles/dataset/PowerGraph/22820534 and the code at //github.com/PowerGraph-Datasets.
The main challenge of large-scale numerical simulation of radiation transport is the high memory and computation time requirements of discretization methods for kinetic equations. In this work, we derive and investigate a neural network-based approximation to the entropy closure method to accurately compute the solution of the multi-dimensional moment system with a low memory footprint and competitive computational time. We extend methods developed for the standard entropy-based closure to the context of regularized entropy-based closures. The main idea is to interpret structure-preserving neural network approximations of the regularized entropy closure as a two-stage approximation to the original entropy closure. We conduct a numerical analysis of this approximation and investigate optimal parameter choices. Our numerical experiments demonstrate that the method has a much lower memory footprint than traditional methods with competitive computation times and simulation accuracy.
This article aims to study efficient/trace optimal designs for crossover trials with multiple responses recorded from each subject in the time periods. A multivariate fixed effects model is proposed with direct and carryover effects corresponding to the multiple responses. The corresponding error dispersion matrix is chosen to be either of the proportional or the generalized Markov covariance type, permitting the existence of direct and cross-correlations within and between the multiple responses. The corresponding information matrices for direct effects under the two types of dispersions are used to determine efficient designs. The efficiency of orthogonal array designs of Type $I$ and strength $2$ is investigated for a wide choice of covariance functions, namely, Mat($0.5$), Mat($1.5$) and Mat($\infty$). To motivate these multivariate crossover designs, a gene expression dataset in a $3 \times 3$ framework is utilized.
We prove that the combination of a target network and over-parameterized linear function approximation establishes a weaker convergence condition for bootstrapped value estimation in certain cases, even with off-policy data. Our condition is naturally satisfied for expected updates over the entire state-action space or learning with a batch of complete trajectories from episodic Markov decision processes. Notably, using only a target network or an over-parameterized model does not provide such a convergence guarantee. Additionally, we extend our results to learning with truncated trajectories, showing that convergence is achievable for all tasks with minor modifications, akin to value truncation for the final states in trajectories. Our primary result focuses on temporal difference estimation for prediction, providing high-probability value estimation error bounds and empirical analysis on Baird's counterexample and a Four-room task. Furthermore, we explore the control setting, demonstrating that similar convergence conditions apply to Q-learning.
Many state-of-the-art models trained on long-range sequences, for example S4, S5 or LRU, are made of sequential blocks combining State-Space Models (SSMs) with neural networks. In this paper we provide a PAC bound that holds for these kind of architectures with stable SSM blocks and does not depend on the length of the input sequence. Imposing stability of the SSM blocks is a standard practice in the literature, and it is known to help performance. Our results provide a theoretical justification for the use of stable SSM blocks as the proposed PAC bound decreases as the degree of stability of the SSM blocks increases.
We demonstrate that data-driven system identification techniques can provide a basis for effective, non-intrusive model order reduction (MOR) for common circuits that are key building blocks in microelectronics. Our approach is motivated by the practical operation of these circuits and utilizes a canonical Hammerstein architecture. To demonstrate the approach we develop a parsimonious Hammerstein model for a non-linear CMOS differential amplifier. We train this model on a combination of direct current (DC) and transient Spice (Xyce) circuit simulation data using a novel sequential strategy to identify the static nonlinear and linear dynamical parts of the model. Simulation results show that the Hammerstein model is an effective surrogate for the differential amplifier circuit that accurately and efficiently reproduces its behavior over a wide range of operating points and input frequencies.
We present LinApart, a routine designed for efficiently performing the univariate partial fraction decomposition of large symbolic expressions. Our method is based on an explicit closed formula for the decomposition of rational functions with fully factorized denominators. We provide implementations in both the Wolfram Mathematica and C languages, made available at //github.com/fekeshazy/LinApart . The routine can provide very significant performance gains over available tools such as the Apart command in Mathematica.
Recent technological advancements have significantly expanded the potential of human action recognition through harnessing the power of 3D data. This data provides a richer understanding of actions, including depth information that enables more accurate analysis of spatial and temporal characteristics. In this context, We study the challenge of 3D human action recognition.Unlike prior methods, that rely on sampling 2D depth images, skeleton points, or point clouds, often leading to substantial memory requirements and the ability to handle only short sequences, we introduce a novel approach for 3D human action recognition, denoted as SpATr (Spiral Auto-encoder and Transformer Network), specifically designed for fixed-topology mesh sequences. The SpATr model disentangles space and time in the mesh sequences. A lightweight auto-encoder, based on spiral convolutions, is employed to extract spatial geometrical features from each 3D mesh. These convolutions are lightweight and specifically designed for fix-topology mesh data. Subsequently, a temporal transformer, based on self-attention, captures the temporal context within the feature sequence. The self-attention mechanism enables long-range dependencies capturing and parallel processing, ensuring scalability for long sequences. The proposed method is evaluated on three prominent 3D human action datasets: Babel, MoVi, and BMLrub, from the Archive of Motion Capture As Surface Shapes (AMASS). Our results analysis demonstrates the competitive performance of our SpATr model in 3D human action recognition while maintaining efficient memory usage. The code and the training results will soon be made publicly available at //github.com/h-bouzid/spatr.
We propose a semiparametric model for dyadic link formations in directed networks. The model contains a set of degree parameters that measure different effects of popularity or outgoingness across nodes, a regression parameter vector that reflects the homophily effect resulting from the nodal attributes or pairwise covariates associated with edges, and a set of latent random noises with unknown distributions. Our interest lies in inferring the unknown degree parameters and homophily parameters. The dimension of the degree parameters increases with the number of nodes. Under the high-dimensional regime, we develop a kernel-based least squares approach to estimate the unknown parameters. The major advantage of our estimator is that it does not encounter the incidental parameter problem for the homophily parameters. We prove consistency of all the resulting estimators of the degree parameters and homophily parameters. We establish high-dimensional central limit theorems for the proposed estimators and provide several applications of our general theory, including testing the existence of degree heterogeneity, testing sparse signals and recovering the support. Simulation studies and a real data application are conducted to illustrate the finite sample performance of the proposed methods.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.