Integrating deep learning with clinical expertise holds great potential for addressing healthcare challenges and empowering medical professionals with improved diagnostic tools. However, the need for annotated medical images is often an obstacle to leveraging the full power of machine learning models. Our research demonstrates that by combining synthetic images, generated using diffusion models, with real images, we can enhance nonalcoholic fatty liver disease (NAFLD) classification performance even in low-data regime settings. We evaluate the quality of the synthetic images by comparing two metrics: Inception Score (IS) and Fr\'{e}chet Inception Distance (FID), computed on diffusion- and generative adversarial network (GAN)-generated images. Our results show superior performance for the diffusion-generated images, with a maximum IS score of $1.90$ compared to $1.67$ for GANs, and a minimum FID score of $69.45$ compared to $100.05$ for GANs. Utilizing a partially frozen CNN backbone (EfficientNet v1), our synthetic augmentation method achieves a maximum image-level ROC AUC of $0.904$ on a NAFLD prediction task.
Radiologists must utilize multiple modal images for tumor segmentation and diagnosis due to the limitations of medical imaging and the diversity of tumor signals. This leads to the development of multimodal learning in segmentation. However, the redundancy among modalities creates challenges for existing subtraction-based joint learning methods, such as misjudging the importance of modalities, ignoring specific modal information, and increasing cognitive load. These thorny issues ultimately decrease segmentation accuracy and increase the risk of overfitting. This paper presents the complementary information mutual learning (CIML) framework, which can mathematically model and address the negative impact of inter-modal redundant information. CIML adopts the idea of addition and removes inter-modal redundant information through inductive bias-driven task decomposition and message passing-based redundancy filtering. CIML first decomposes the multimodal segmentation task into multiple subtasks based on expert prior knowledge, minimizing the information dependence between modalities. Furthermore, CIML introduces a scheme in which each modality can extract information from other modalities additively through message passing. To achieve non-redundancy of extracted information, the redundant filtering is transformed into complementary information learning inspired by the variational information bottleneck. The complementary information learning procedure can be efficiently solved by variational inference and cross-modal spatial attention. Numerical results from the verification task and standard benchmarks indicate that CIML efficiently removes redundant information between modalities, outperforming SOTA methods regarding validation accuracy and segmentation effect.
Reinforcement learning research obtained significant success and attention with the utilization of deep neural networks to solve problems in high dimensional state or action spaces. While deep reinforcement learning policies are currently being deployed in many different fields from medical applications to self driving vehicles, there are still ongoing questions the field is trying to answer on the generalization capabilities of deep reinforcement learning policies. In this paper, we will outline the fundamental reasons why deep reinforcement learning policies encounter overfitting problems that limit their robustness and generalization capabilities. Furthermore, we will formalize and unify the diverse solution approaches to increase generalization, and overcome overfitting in state-action value functions. We believe our study can provide a compact systematic unified analysis for the current advancements in deep reinforcement learning, and help to construct robust deep neural policies with improved generalization abilities.
Distributional Reinforcement Learning (RL) estimates return distribution mainly by learning quantile values via minimizing the quantile Huber loss function, entailing a threshold parameter often selected heuristically or via hyperparameter search, which may not generalize well and can be suboptimal. This paper introduces a generalized quantile Huber loss function derived from Wasserstein distance (WD) calculation between Gaussian distributions, capturing noise in predicted (current) and target (Bellman-updated) quantile values. Compared to the classical quantile Huber loss, this innovative loss function enhances robustness against outliers. Notably, the classical Huber loss function can be seen as an approximation of our proposed loss, enabling parameter adjustment by approximating the amount of noise in the data during the learning process. Empirical tests on Atari games, a common application in distributional RL, and a recent hedging strategy using distributional RL, validate the effectiveness of our proposed loss function and its potential for parameter adjustments in distributional RL.
As a new research area, quantum software testing lacks systematic testing benchmarks to assess testing techniques' effectiveness. Recently, some open-source benchmarks and mutation analysis tools have emerged. However, there is insufficient evidence on how various quantum circuit characteristics (e.g., circuit depth, number of quantum gates), algorithms (e.g., Quantum Approximate Optimization Algorithm), and mutation characteristics (e.g., mutation operators) affect the most mutant detection in quantum circuits. Studying such relations is important to systematically design faulty benchmarks with varied attributes (e.g., the difficulty in detecting a seeded fault) to facilitate assessing the cost-effectiveness of quantum software testing techniques efficiently. To this end, we present a large-scale empirical evaluation with more than 700K faulty benchmarks (quantum circuits) generated by mutating 382 real-world quantum circuits. Based on the results, we provide valuable insights for researchers to define systematic quantum mutation analysis techniques. We also provide a tool to recommend mutants to users based on chosen characteristics (e.g., a quantum algorithm type) and the required difficulty of killing mutants. Finally, we also provide faulty benchmarks that can already be used to assess the cost-effectiveness of quantum software testing techniques.
Federated learning (FL) goes beyond traditional, centralized machine learning by distributing model training among a large collection of edge clients. These clients cooperatively train a global, e.g., cloud-hosted, model without disclosing their local, private training data. The global model is then shared among all the participants which use it for local predictions. In this paper, we put forward a novel attacker model aiming at turning FL systems into covert channels to implement a stealth communication infrastructure. The main intuition is that, during federated training, a malicious sender can poison the global model by submitting purposely crafted examples. Although the effect of the model poisoning is negligible to other participants, and does not alter the overall model performance, it can be observed by a malicious receiver and used to transmit a single bit.
The restricted mean survival time (RMST) model has been garnering attention as a way to provide a clinically intuitive measure: the mean survival time. RMST models, which use methods based on pseudo time-to-event values and inverse probability censoring weighting, can adjust covariates. However, no approach has yet been introduced that considers random effects for clusters. In this paper, we propose a new random-effect RMST. We present two methods of analysis that consider variable effects by i) using a generalized mixed model with pseudo-values and ii) integrating the estimated results from the inverse probability censoring weighting estimating equations for each cluster. We evaluate our proposed methods through computer simulations. In addition, we analyze the effect of a mother's age at birth on under-five deaths in India using states as clusters.
Multimodal learning significantly benefits cancer survival prediction, especially the integration of pathological images and genomic data. Despite advantages of multimodal learning for cancer survival prediction, massive redundancy in multimodal data prevents it from extracting discriminative and compact information: (1) An extensive amount of intra-modal task-unrelated information blurs discriminability, especially for gigapixel whole slide images (WSIs) with many patches in pathology and thousands of pathways in genomic data, leading to an ``intra-modal redundancy" issue. (2) Duplicated information among modalities dominates the representation of multimodal data, which makes modality-specific information prone to being ignored, resulting in an ``inter-modal redundancy" issue. To address these, we propose a new framework, Prototypical Information Bottlenecking and Disentangling (PIBD), consisting of Prototypical Information Bottleneck (PIB) module for intra-modal redundancy and Prototypical Information Disentanglement (PID) module for inter-modal redundancy. Specifically, a variant of information bottleneck, PIB, is proposed to model prototypes approximating a bunch of instances for different risk levels, which can be used for selection of discriminative instances within modality. PID module decouples entangled multimodal data into compact distinct components: modality-common and modality-specific knowledge, under the guidance of the joint prototypical distribution. Extensive experiments on five cancer benchmark datasets demonstrated our superiority over other methods.
This study was groundbreaking in its application of neural network models for nitrate management in the Recirculating Aquaculture System (RAS). A hybrid neural network model was proposed, which accurately predicted daily nitrate concentration and its trends using six water quality parameters. We conducted a 105-day aquaculture experiment, during which we collected 450 samples from five sets of RAS to train our model (C-L-A model) which incorporates Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-Attention. Furthermore, we obtained 90 samples from a standalone RAS as the testing data to evaluate the performance of the model in practical applications. The experimental results proved that the C-L-A model accurately predicted nitrate concentration in RAS and maintained good performance even with a reduced proportion of training data. We recommend using water quality parameters from the past 7 days to forecast future nitrate concentration, as this timeframe allows the model to achieve maximum generalization capability. Additionally, we compared the performance of the C-L-A model with three basic neural network models (CNN, LSTM, self-Attention) as well as three hybrid neural network models (CNN-LSTM, CNN-Attention, LSTM-Attention). The results demonstrated that the C-L-A model (R2=0.956) significantly outperformed the other neural network models (R2=0.901-0.927). Our study suggests that the utilization of neural network models, specifically the C-L-A model, could potentially assist the RAS industry in conserving resources for daily nitrate monitoring.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.