Long-form question answering (LFQA) enables answering a wide range of questions, but its flexibility poses enormous challenges for evaluation. We perform the first targeted study of the evaluation of long-form answers, covering both human and automatic evaluation practices. We hire domain experts in seven areas to provide preference judgments over pairs of answers, along with free-form justifications for their choices. We present a careful analysis of experts' evaluation, which focuses on new aspects such as the comprehensiveness of the answer. Next, we examine automatic text generation metrics, finding that no existing metrics are predictive of human preference judgments. However, some metrics correlate with fine-grained aspects of answers (e.g., coherence). We encourage future work to move away from a single "overall score" of the answer and adopt a multi-faceted evaluation, targeting aspects such as factuality and completeness. We publicly release all of our annotations and code to spur future work into LFQA evaluation.
Interpretability of Deep Learning (DL) is a barrier to trustworthy AI. Despite great efforts made by the Explainable AI (XAI) community, explanations lack robustness -- indistinguishable input perturbations may lead to different XAI results. Thus, it is vital to assess how robust DL interpretability is, given an XAI method. In this paper, we identify several challenges that the state-of-the-art is unable to cope with collectively: i) existing metrics are not comprehensive; ii) XAI techniques are highly heterogeneous; iii) misinterpretations are normally rare events. To tackle these challenges, we introduce two black-box evaluation methods, concerning the worst-case interpretation discrepancy and a probabilistic notion of how robust in general, respectively. Genetic Algorithm (GA) with bespoke fitness function is used to solve constrained optimisation for efficient worst-case evaluation. Subset Simulation (SS), dedicated to estimate rare event probabilities, is used for evaluating overall robustness. Experiments show that the accuracy, sensitivity, and efficiency of our methods outperform the state-of-the-arts. Finally, we demonstrate two applications of our methods: ranking robust XAI methods and selecting training schemes to improve both classification and interpretation robustness.
Modeling discourse -- the linguistic phenomena that go beyond individual sentences, is a fundamental yet challenging aspect of natural language processing (NLP). However, existing evaluation benchmarks primarily focus on the evaluation of inter-sentence properties and overlook critical discourse phenomena that cross sentences. To bridge the gap, we propose Disco-Bench, a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks, covering understanding, translation, and generation. Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena (e.g. cohesion and coherence) in Chinese and/or English. For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge. We totally evaluate 20 general-, in-domain and commercial models based on Transformer, advanced pretraining architectures and large language models (LLMs). Our results show (1) the challenge and necessity of our evaluation benchmark; (2) fine-grained pretraining based on literary document-level training data consistently improves the modeling of discourse information. We will release the datasets, pretrained models, and leaderboard, which we hope can significantly facilitate research in this field: //github.com/longyuewangdcu/Disco-Bench.
Large language models (LLMs), such as GPT-3 and GPT-4, have demonstrated exceptional performance in various natural language processing tasks and have shown the ability to solve certain reasoning problems. However, their reasoning capabilities are limited and relatively shallow, despite the application of various prompting techniques. In contrast, formal logic is adept at handling complex reasoning, but translating natural language descriptions into formal logic is a challenging task that non-experts struggle with. This paper proposes a neuro-symbolic method that combines the strengths of large language models and answer set programming. Specifically, we employ an LLM to transform natural language descriptions of logic puzzles into answer set programs. We carefully design prompts for an LLM to convert natural language descriptions into answer set programs in a step by step manner. Surprisingly, with just a few in-context learning examples, LLMs can generate reasonably complex answer set programs. The majority of errors made are relatively simple and can be easily corrected by humans, thus enabling LLMs to effectively assist in the creation of answer set programs.
Off-policy evaluation (OPE) aims to estimate the benefit of following a counterfactual sequence of actions, given data collected from executed sequences. However, existing OPE estimators often exhibit high bias and high variance in problems involving large, combinatorial action spaces. We investigate how to mitigate this issue using factored action spaces i.e. expressing each action as a combination of independent sub-actions from smaller action spaces. This approach facilitates a finer-grained analysis of how actions differ in their effects. In this work, we propose a new family of "decomposed" importance sampling (IS) estimators based on factored action spaces. Given certain assumptions on the underlying problem structure, we prove that the decomposed IS estimators have less variance than their original non-decomposed versions, while preserving the property of zero bias. Through simulations, we empirically verify our theoretical results, probing the validity of various assumptions. Provided with a technique that can derive the action space factorisation for a given problem, our work shows that OPE can be improved "for free" by utilising this inherent problem structure.
Before deploying a language model (LM) within a given domain, it is important to measure its tendency to generate factually incorrect information in that domain. Existing factual generation evaluation methods focus on facts sampled from the LM itself, and thus do not control the set of evaluated facts and might under-represent rare and unlikely facts. We propose FACTOR: Factual Assessment via Corpus TransfORmation, a scalable approach for evaluating LM factuality. FACTOR automatically transforms a factual corpus of interest into a benchmark evaluating an LM's propensity to generate true facts from the corpus vs. similar but incorrect statements. We use our framework to create two benchmarks: Wiki-FACTOR and News-FACTOR. We show that: (i) our benchmark scores increase with model size and improve when the LM is augmented with retrieval; (ii) benchmark score correlates with perplexity, but the two metrics do not always agree on model ranking; and (iii) when perplexity and benchmark score disagree, the latter better reflects factuality in open-ended generation, as measured by human annotators. We make our data and code publicly available in //github.com/AI21Labs/factor.
While summarization has been extensively researched in natural language processing (NLP), cross-lingual cross-temporal summarization (CLCTS) is a largely unexplored area that has the potential to improve cross-cultural accessibility and understanding. This paper comprehensively addresses the CLCTS task, including dataset creation, modeling, and evaluation. We build the first CLCTS corpus, leveraging historical fictive texts and Wikipedia summaries in English and German, and examine the effectiveness of popular transformer end-to-end models with different intermediate finetuning tasks. Additionally, we explore the potential of ChatGPT for CLCTS as a summarizer and an evaluator. Overall, we report evaluations from humans, ChatGPT, and several recent automatic evaluation metrics where we find that our intermediate task finetuned end-to-end models generate bad to moderate quality summaries; ChatGPT as a summarizer (without any finetuning) provides moderate to good quality outputs and as an evaluator correlates moderately with human evaluations but is prone to giving lower scores. ChatGPT also seems very adept at normalizing historical text and outperforms context-unaware spelling normalization tools such as Norma. We finally test ChatGPT in a scenario with adversarially attacked and unseen source documents and find that ChatGPT profits from its prior knowledge to a certain degree, with better performances for omission and entity swap than negation against its prior knowledge. This benefit inflates its assessed quality as ChatGPT performs slightly worse for unseen source documents compared to seen documents. We additionally introspect our models' performances to find that longer, older and more complex source texts (all of which are more characteristic for historical language variants) are harder to summarize for all models, indicating the difficulty of the CLCTS task.
Internet measurements are a crucial foundation of IPv6-related research. Due to the infeasibility of full address space scans for IPv6 however, those measurements rely on collections of reliably responsive, unbiased addresses, as provided e.g., by the IPv6 Hitlist service. Although used for various use cases, the hitlist provides an unfiltered list of responsive addresses, the hosts behind which can come from a range of different networks and devices, such as web servers, customer-premises equipment (CPE) devices, and Internet infrastructure. In this paper, we demonstrate the importance of tailoring hitlists in accordance with the research goal in question. By using PeeringDB we classify hitlist addresses into six different network categories, uncovering that 42% of hitlist addresses are in ISP networks. Moreover, we show the different behavior of those addresses depending on their respective category, e.g., ISP addresses exhibiting a relatively low lifetime. Furthermore, we analyze different Target Generation Algorithms (TGAs), which are used to increase the coverage of IPv6 measurements by generating new responsive targets for scans. We evaluate their performance under various conditions and find generated addresses to show vastly differing responsiveness levels for different TGAs.
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: //github.com/MLGroupJLU/LLM-eval-survey.
In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.
For an image with multiple scene texts, different people may be interested in different text information. Current text-aware image captioning models are not able to generate distinctive captions according to various information needs. To explore how to generate personalized text-aware captions, we define a new challenging task, namely Question-controlled Text-aware Image Captioning (Qc-TextCap). With questions as control signals, this task requires models to understand questions, find related scene texts and describe them together with objects fluently in human language. Based on two existing text-aware captioning datasets, we automatically construct two datasets, ControlTextCaps and ControlVizWiz to support the task. We propose a novel Geometry and Question Aware Model (GQAM). GQAM first applies a Geometry-informed Visual Encoder to fuse region-level object features and region-level scene text features with considering spatial relationships. Then, we design a Question-guided Encoder to select the most relevant visual features for each question. Finally, GQAM generates a personalized text-aware caption with a Multimodal Decoder. Our model achieves better captioning performance and question answering ability than carefully designed baselines on both two datasets. With questions as control signals, our model generates more informative and diverse captions than the state-of-the-art text-aware captioning model. Our code and datasets are publicly available at //github.com/HAWLYQ/Qc-TextCap.