亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Aerial vehicles equipped with manipulators can serve contact-based industrial applications, where fundamental tasks like drilling and grinding often necessitate aerial platforms to handle heavy tools. Industrial environments often involve non-horizontal surfaces. Existing aerial manipulation platforms based on multirotors typically feature a fixed CoM (Center of Mass) within the rotor-defined area, leading to a considerable moment arm between the EE (End-Effector) tip and the CoM for operations on such surfaces. Carrying heavy tools at the EE tip of the manipulator with an extended moment arm can lead to system instability and potential damage to the servo actuators used in the manipulator. To tackle this issue, we present a novel aerial vehicle tailored for handling heavy tools on non-horizontal surfaces. In this work, we provide the platform's system design, modeling, and control strategies. This platform can carry heavy manipulators within the rotor-defined area during free flight. During interactions, the manipulator can shift towards the work surface outside the rotor-defined area, resulting in a displaced CoM location with a significantly shorter moment arm. Furthermore, we propose a method for automatically determining the manipulator's position to reach the maximum CoM displacement towards the work surface. Our proposed concepts are validated through simulations that closely capture the developed physical prototype of the platform.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

Leveraging complementary relationships across modalities has recently drawn a lot of attention in multimodal emotion recognition. Most of the existing approaches explored cross-attention to capture the complementary relationships across the modalities. However, the modalities may also exhibit weak complementary relationships, which may deteriorate the cross-attended features, resulting in poor multimodal feature representations. To address this problem, we propose Inconsistency-Aware Cross-Attention (IACA), which can adaptively select the most relevant features on-the-fly based on the strong or weak complementary relationships across audio and visual modalities. Specifically, we design a two-stage gating mechanism that can adaptively select the appropriate relevant features to deal with weak complementary relationships. Extensive experiments are conducted on the challenging Aff-Wild2 dataset to show the robustness of the proposed model.

Vector-matrix-multiplication (VMM) accel-erators have gained a lot of traction, especially due to therise of convolutional neural networks (CNNs) and the desireto compute them on the edge. Besides the classical digitalapproach, analog computing has gone through a renais-sance to push energy efficiency further. A more recent ap-proach is called time-domain (TD) computing. In contrastto analog computing, TD computing permits easy technol-ogy as well as voltage scaling. As it has received limitedresearch attention, it is not yet clear which scenarios aremost suitable to be computed in the TD. In this work, weinvestigate these scenarios, focussing on energy efficiencyconsidering approximative computations that preserve ac-curacy. Both goals are addressed by a novel efficiency met-ric, which is used to find a baseline design. We use SPICEsimulation data which is fed into a python framework toevaluate how performance scales for VMM computation.We see that TD computing offers best energy efficiency forsmall to medium sized arrays. With throughput and sili-con footprint we investigate two additional metrics, givinga holistic comparison.

Farm businesses are increasingly adopting renewables to enhance energy efficiency and reduce reliance on fossil fuels and the grid. This shift aims to decrease dairy farms' dependence on traditional electricity grids by enabling the sale of surplus renewable energy in Peer-to-Peer markets. However, the dynamic nature of farm communities poses challenges, requiring specialized algorithms for P2P energy trading. To address this, the Multi-Agent Peer-to-Peer Dairy Farm Energy Simulator (MAPDES) has been developed, providing a platform to experiment with Reinforcement Learning techniques. The simulations demonstrate significant cost savings, including a 43% reduction in electricity expenses, a 42% decrease in peak demand, and a 1.91% increase in energy sales compared to baseline scenarios lacking peer-to-peer energy trading or renewable energy sources.

In the process industry, optimizing production lines for long-term efficiency requires real-time monitoring and analysis of operation states to fine-tune production line parameters. However, the complexity in operational logic and the intricate coupling of production process parameters make it difficult to develop an accurate mathematical model for the entire process, thus hindering the deployment of efficient optimization mechanisms. In view of these difficulties, we propose to deploy a digital twin of the production line by digitally abstracting its physical layout and operational logic. By iteratively mapping the real-world data reflecting equipment operation status and product quality inspection in the digital twin, we adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks. This model enables the data-driven state evolution of the digital twin. The digital twin takes a role of aggregating the information of actual operating conditions and the results of quality-sensitive analysis, which facilitates the optimization of process production quality with virtual-reality evolution under multi-dimensional constraints. Leveraging the digital twin model as an information-flow carrier, we extract temporal features from key process indicators and establish a production process quality prediction model based on the proposed composite neural network. Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines. This integration achieves an average operating status prediction accuracy of over 98\% and near-optimal production process control.

We study vehicle dispatching in autonomous mobility on demand (AMoD) systems, where a central operator assigns vehicles to customer requests or rejects these with the aim of maximizing its total profit. Recent approaches use multi-agent deep reinforcement learning (MADRL) to realize scalable yet performant algorithms, but train agents based on local rewards, which distorts the reward signal with respect to the system-wide profit, leading to lower performance. We therefore propose a novel global-rewards-based MADRL algorithm for vehicle dispatching in AMoD systems, which resolves so far existing goal conflicts between the trained agents and the operator by assigning rewards to agents leveraging a counterfactual baseline. Our algorithm shows statistically significant improvements across various settings on real-world data compared to state-of-the-art MADRL algorithms with local rewards. We further provide a structural analysis which shows that the utilization of global rewards can improve implicit vehicle balancing and demand forecasting abilities. Our code is available at //github.com/tumBAIS/GR-MADRL-AMoD.

Energy storage devices, such as batteries, thermal energy storages, and hydrogen systems, can help mitigate climate change by ensuring a more stable and sustainable power supply. To maximize the effectiveness of such energy storage, determining the appropriate charging and discharging amounts for each time period is crucial. Reinforcement learning is preferred over traditional optimization for the control of energy storage due to its ability to adapt to dynamic and complex environments. However, the continuous nature of charging and discharging levels in energy storage poses limitations for discrete reinforcement learning, and time-varying feasible charge-discharge range based on state of charge (SoC) variability also limits the conventional continuous reinforcement learning. In this paper, we propose a continuous reinforcement learning approach that takes into account the time-varying feasible charge-discharge range. An additional objective function was introduced for learning the feasible action range for each time period, supplementing the objectives of training the actor for policy learning and the critic for value learning. This actively promotes the utilization of energy storage by preventing them from getting stuck in suboptimal states, such as continuous full charging or discharging. This is achieved through the enforcement of the charging and discharging levels into the feasible action range. The experimental results demonstrated that the proposed method further maximized the effectiveness of energy storage by actively enhancing its utilization.

-Recent strides in model predictive control (MPC)underscore a dependence on numerical advancements to efficientlyand accurately solve large-scale problems. Given the substantialnumber of variables characterizing typical whole-body optimalcontrol (OC) problems -often numbering in the thousands-exploiting the sparse structure of the numerical problem becomescrucial to meet computational demands, typically in the range ofa few milliseconds. A fundamental building block for computingNewton or Sequential Quadratic Programming (SQP) steps indirect optimal control methods involves addressing the linearquadratic regulator (LQR) problem. This paper concentrateson equality-constrained problems featuring implicit systemdynamics and dual regularization, a characteristic found inadvanced interior-point or augmented Lagrangian solvers. Here,we introduce a parallel algorithm designed for solving an LQRproblem with dual regularization. Leveraging a rewriting of theLQR recursion through block elimination, we first enhanced theefficiency of the serial algorithm, then subsequently generalized itto handle parametric problems. This extension enables us to splitdecision variables and solve multiple subproblems concurrently.Our algorithm is implemented in our nonlinear numerical optimalcontrol library ALIGATOR. It showcases improved performanceover previous serial formulations and we validate its efficacy bydeploying it in the model predictive control of a real quadrupedrobot. This paper follows up from our prior work on augmentedLagrangian methods for numerical optimal control with implicitdynamics and constraints.

The increasing complexity of automated driving functions and their growing operational design domains imply more demanding requirements on their validation. Classical methods such as field tests or formal analyses are not sufficient anymore and need to be complemented by simulations. For simulations, the standard approach is scenario-based testing, as opposed to distance-based testing primarily performed in field tests. Currently, the time evolution of specific scenarios is mainly described using trajectories, which limit or at least hamper generalizations towards variations. As an alternative, maneuver-based approaches have been proposed. We shed light on the state of the art and available foundations for this new method through a literature review of early and recent works related to maneuver-based scenario description. It includes related modeling approaches originally developed for other applications. Current limitations and research gaps are identified.

In many applications, the demand arises for algorithms capable of aligning partially overlapping point sets while remaining invariant to the corresponding transformations. This research presents a method designed to meet such requirements through minimization of the objective function of the robust point matching (RPM) algorithm. First, we show that the RPM objective is a cubic polynomial. Then, through variable substitution, we transform the RPM objective to a quadratic function. Leveraging the convex envelope of bilinear monomials, we proceed to relax the resulting objective function, thus obtaining a lower bound problem that can be conveniently decomposed into distinct linear assignment and low-dimensional convex quadratic program components, both amenable to efficient optimization. Furthermore, a branch-and-bound (BnB) algorithm is devised, which solely branches over the transformation parameters, thereby boosting convergence rate. Empirical evaluations demonstrate better robustness of the proposed methodology against non-rigid deformation, positional noise, and outliers, particularly in scenarios where outliers remain distinct from inliers, when compared with prevailing state-of-the-art approaches.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司