亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article addresses the lack of comprehensive studies on Web3 technologies, primarily due to lawyers' reluctance to explore technical intricacies. Understanding the underlying technological foundations is crucial to enhance the credibility of legal opinions. This article aims to illuminate these foundations, debunk myths, and concentrate on determining the legal status of crypto-assets in the context of property rights within the distributed economy. In addition, this article notes that the intangible nature of crypto-assets that derive value from distributed registries, and their resistance to deletion, makes crypto-assets more akin to the autonomy of intellectual property than physical media. The article presents illustrative examples from common law (United States, United Kingdom, New Zealand) and civil law (Germany, Austria, Poland) systems. Proposing a universal solution, it advocates a comprehensive framework safeguarding digital property - data ownership - extending beyond the confines of Web3. This article presents a comprehensive, multi-layered approach to the analysis of tokens as digital content and virtual goods. The approach, universally applicable to various of such goods, scrutinizes property on three distinct layers: first, the rights to the virtual good itself; second, the rights to the assets linked to the virtual good; and third, the rights to the intellectual property intricately associated with the token. Additionally, the paper provides concise analysis of the conflict of laws rules applicable to virtual goods. It also delves into issues concerning formal requirements for the transfer of intellectual property rights, licensing, the first sale (exhaustion) doctrine, the concept of the lawful acquirer, and other crucial aspects of intellectual property in the realm of virtual goods, particularly within the emerging metaverse.

相關內容

Dynamic Mode Decomposition (DMD) is a popular data-driven analysis technique used to decompose complex, nonlinear systems into a set of modes, revealing underlying patterns and dynamics through spectral analysis. This review presents a comprehensive and pedagogical examination of DMD, emphasizing the role of Koopman operators in transforming complex nonlinear dynamics into a linear framework. A distinctive feature of this review is its focus on the relationship between DMD and the spectral properties of Koopman operators, with particular emphasis on the theory and practice of DMD algorithms for spectral computations. We explore the diverse "multiverse" of DMD methods, categorized into three main areas: linear regression-based methods, Galerkin approximations, and structure-preserving techniques. Each category is studied for its unique contributions and challenges, providing a detailed overview of significant algorithms and their applications as outlined in Table 1. We include a MATLAB package with examples and applications to enhance the practical understanding of these methods. This review serves as both a practical guide and a theoretical reference for various DMD methods, accessible to both experts and newcomers, and enabling readers to delve into their areas of interest in the expansive field of DMD.

While it is well-known that neural networks enjoy excellent approximation capabilities, it remains a big challenge to compute such approximations from point samples. Based on tools from Information-based complexity, recent work by Grohs and Voigtlaender [Journal of the FoCM (2023)] developed a rigorous framework for assessing this so-called "theory-to-practice gap". More precisely, in that work it is shown that there exist functions that can be approximated by neural networks with ReLU activation function at an arbitrary rate while requiring an exponentially growing (in the input dimension) number of samples for their numerical computation. The present study extends these findings by showing analogous results for the ReQU activation function.

Equivariance of linear neural network layers is well studied. In this work, we relax the equivariance condition to only be true in a projective sense. We propose a way to construct a projectively equivariant neural network through building a standard equivariant network where the linear group representations acting on each intermediate feature space are "multiplicatively modified lifts" of projective group representations. By theoretically studying the relation of projectively and linearly equivariant linear layers, we show that our approach is the most general possible when building a network out of linear layers. The theory is showcased in two simple experiments.

There are now over 20 commercial vector database management systems (VDBMSs), all produced within the past five years. But embedding-based retrieval has been studied for over ten years, and similarity search a staggering half century and more. Driving this shift from algorithms to systems are new data intensive applications, notably large language models, that demand vast stores of unstructured data coupled with reliable, secure, fast, and scalable query processing capability. A variety of new data management techniques now exist for addressing these needs, however there is no comprehensive survey to thoroughly review these techniques and systems. We start by identifying five main obstacles to vector data management, namely vagueness of semantic similarity, large size of vectors, high cost of similarity comparison, lack of natural partitioning that can be used for indexing, and difficulty of efficiently answering hybrid queries that require both attributes and vectors. Overcoming these obstacles has led to new approaches to query processing, storage and indexing, and query optimization and execution. For query processing, a variety of similarity scores and query types are now well understood; for storage and indexing, techniques include vector compression, namely quantization, and partitioning based on randomization, learning partitioning, and navigable partitioning; for query optimization and execution, we describe new operators for hybrid queries, as well as techniques for plan enumeration, plan selection, and hardware accelerated execution. These techniques lead to a variety of VDBMSs across a spectrum of design and runtime characteristics, including native systems specialized for vectors and extended systems that incorporate vector capabilities into existing systems. We then discuss benchmarks, and finally we outline research challenges and point the direction for future work.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.

This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司