亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Monitoring software systems at runtime is key for understanding workloads, debugging, and self-adaptation. It typically involves collecting and storing observable software data, which can be analyzed online or offline. Despite the usefulness of collecting system data, it may significantly impact the system execution by delaying response times and competing with system resources. The typical approach to cope with this is to filter portions of the system to be monitored and to sample data. Although these approaches are a step towards achieving a desired trade-off between the amount of collected information and the impact on the system performance, they focus on collecting data of a particular type or may capture a sample that does not correspond to the actual system behavior. In response, we propose an adaptive runtime monitoring process to dynamically adapt the sampling rate while monitoring software systems. It includes algorithms with statistical foundations to improve the representativeness of collected samples without compromising the system performance. Our evaluation targets five applications of a widely used benchmark. It shows that the error (RMSE) of the samples collected with our approach is 9-54% lower than the main alternative strategy (sampling rate inversely proportional to the throughput), with 1-6% higher performance impact.

相關內容

Few-shot learning (FSL) is one of the significant and hard problems in the field of image classification. However, in contrast to the rapid development of the visible light dataset, the progress in SAR target image classification is much slower. The lack of unified benchmark is a key reason for this phenomenon, which may be severely overlooked by the current literature. The researchers of SAR target image classification always report their new results on their own datasets and experimental setup. It leads to inefficiency in result comparison and impedes the further progress of this area. Motivated by this observation, we propose a novel few-shot SAR image classification benchmark (FewSAR) to address this issue. FewSAR consists of an open-source Python code library of 15 classic methods in three categories for few-shot SAR image classification. It provides an accessible and customizable testbed for different few-shot SAR image classification task. To further understanding the performance of different few-shot methods, we establish evaluation protocols and conduct extensive experiments within the benchmark. By analyzing the quantitative results and runtime under the same setting, we observe that the accuracy of metric learning methods can achieve the best results. Meta-learning methods and fine-tuning methods perform poorly on few-shot SAR images, which is primarily due to the bias of existing datasets. We believe that FewSAR will open up a new avenue for future research and development, on real-world challenges at the intersection of SAR image classification and few-shot deep learning. We will provide our code for the proposed FewSAR at //github.com/solarlee/FewSAR.

Deep Reinforcement Learning (RL) has emerged as a powerful paradigm for training neural policies to solve complex control tasks. However, these policies tend to be overfit to the exact specifications of the task and environment they were trained on, and thus do not perform well when conditions deviate slightly or when composed hierarchically to solve even more complex tasks. Recent work has shown that training a mixture of policies, as opposed to a single one, that are driven to explore different regions of the state-action space can address this shortcoming by generating a diverse set of behaviors, referred to as skills, that can be collectively used to great effect in adaptation tasks or for hierarchical planning. This is typically realized by including a diversity term - often derived from information theory - in the objective function optimized by RL. However these approaches often require careful hyperparameter tuning to be effective. In this work, we demonstrate that less widely-used neuroevolution methods, specifically Quality Diversity (QD), are a competitive alternative to information-theory-augmented RL for skill discovery. Through an extensive empirical evaluation comparing eight state-of-the-art algorithms (four flagship algorithms from each line of work) on the basis of (i) metrics directly evaluating the skills' diversity, (ii) the skills' performance on adaptation tasks, and (iii) the skills' performance when used as primitives for hierarchical planning; QD methods are found to provide equal, and sometimes improved, performance whilst being less sensitive to hyperparameters and more scalable. As no single method is found to provide near-optimal performance across all environments, there is a rich scope for further research which we support by proposing future directions and providing optimized open-source implementations.

To increase brand awareness, many advertisers conclude contracts with advertising platforms to purchase traffic and then deliver advertisements to target audiences. In a whole delivery period, advertisers usually desire a certain impression count for the ads, and they also expect that the delivery performance is as good as possible (e.g., obtaining high click-through rate). Advertising platforms employ pacing algorithms to satisfy the demands via adjusting the selection probabilities to traffic requests in real-time. However, the delivery procedure is also affected by the strategies from publishers, which cannot be controlled by advertising platforms. Preloading is a widely used strategy for many types of ads (e.g., video ads) to make sure that the response time for displaying after a traffic request is legitimate, which results in delayed impression phenomenon. Traditional pacing algorithms cannot handle the preloading nature well because they rely on immediate feedback signals, and may fail to guarantee the demands from advertisers. In this paper, we focus on a new research problem of impression pacing for preloaded ads, and propose a Reinforcement Learning To Pace framework RLTP. It learns a pacing agent that sequentially produces selection probabilities in the whole delivery period. To jointly optimize the two objectives of impression count and delivery performance, RLTP employs tailored reward estimator to satisfy the guaranteed impression count, penalize the over-delivery and maximize the traffic value. Experiments on large-scale industrial datasets verify that RLTP outperforms baseline pacing algorithms by a large margin. We have deployed the RLTP framework online to our advertising platform, and results show that it achieves significant uplift to core metrics including delivery completion rate and click-through rate.

The allocation of limited resources to a large number of potential candidates presents a pervasive challenge. In the context of ranking and selecting top candidates from heteroscedastic units, conventional methods often result in over-representations of subpopulations, and this issue is further exacerbated in large-scale settings where thousands of candidates are considered simultaneously. To address this challenge, we propose a new multiple comparison framework that incorporates a modified power notion to prioritize the selection of important effects and employs a novel ranking metric to assess the relative importance of units. We develop both oracle and data-driven algorithms, and demonstrate their effectiveness in controlling the error rates and achieving optimality. We evaluate the numerical performance of our proposed method using simulated and real data. The results show that our framework enables a more balanced selection of effects that are both statistically significant and practically important, and results in an objective and relevant ranking scheme that is well-suited to practical scenarios.

In recent years, Deep Reinforcement Learning (DRL) has emerged as a promising method for robot collision avoidance. However, such DRL models often come with limitations, such as adapting effectively to structured environments containing various pedestrians. In order to solve this difficulty, previous research has attempted a few approaches, including training an end-to-end solution by integrating a waypoint planner with DRL and developing a multimodal solution to mitigate the drawbacks of the DRL model. However, these approaches have encountered several issues, including slow training times, scalability challenges, and poor coordination among different models. To address these challenges, this paper introduces a novel approach called evolutionary curriculum training to tackle these challenges. The primary goal of evolutionary curriculum training is to evaluate the collision avoidance model's competency in various scenarios and create curricula to enhance its insufficient skills. The paper introduces an innovative evaluation technique to assess the DRL model's performance in navigating structured maps and avoiding dynamic obstacles. Additionally, an evolutionary training environment generates all the curriculum to improve the DRL model's inadequate skills tested in the previous evaluation. We benchmark the performance of our model across five structured environments to validate the hypothesis that this evolutionary training environment leads to a higher success rate and a lower average number of collisions. Further details and results at our project website.

Information access systems, such as search engines, recommender systems, and conversational assistants, have become integral to our daily lives as they help us satisfy our information needs. However, evaluating the effectiveness of these systems presents a long-standing and complex scientific challenge. This challenge is rooted in the difficulty of assessing a system's overall effectiveness in assisting users to complete tasks through interactive support, and further exacerbated by the substantial variation in user behaviour and preferences. To address this challenge, user simulation emerges as a promising solution. This book focuses on providing a thorough understanding of user simulation techniques designed specifically for evaluation purposes. We begin with a background of information access system evaluation and explore the diverse applications of user simulation. Subsequently, we systematically review the major research progress in user simulation, covering both general frameworks for designing user simulators, utilizing user simulation for evaluation, and specific models and algorithms for simulating user interactions with search engines, recommender systems, and conversational assistants. Realizing that user simulation is an interdisciplinary research topic, whenever possible, we attempt to establish connections with related fields, including machine learning, dialogue systems, user modeling, and economics. We end the book with a detailed discussion of important future research directions, many of which extend beyond the evaluation of information access systems and are expected to have broader impact on how to evaluate interactive intelligent systems in general.

Predicting the future trajectories of nearby objects plays a pivotal role in Robotics and Automation such as autonomous driving. While learning-based trajectory prediction methods have achieved remarkable performance on public benchmarks, the generalization ability of these approaches remains questionable. The poor generalizability on unseen domains, a well-recognized defect of data-driven approaches, can potentially harm the real-world performance of trajectory prediction models. We are thus motivated to improve generalization ability of models instead of merely pursuing high accuracy on average. Due to the lack of benchmarks for quantifying the generalization ability of trajectory predictors, we first construct a new benchmark called argoverse-shift, where the data distributions of domains are significantly different. Using this benchmark for evaluation, we identify that the domain shift problem seriously hinders the generalization of trajectory predictors since state-of-the-art approaches suffer from severe performance degradation when facing those out-of-distribution scenes. To enhance the robustness of models against domain shift problem, we propose a plug-and-play strategy for domain normalization in trajectory prediction. Our strategy utilizes the Frenet coordinate frame for modeling and can effectively narrow the domain gap of different scenes caused by the variety of road geometry and topology. Experiments show that our strategy noticeably boosts the prediction performance of the state-of-the-art in domains that were previously unseen to the models, thereby improving the generalization ability of data-driven trajectory prediction methods.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司