We consider particle systems described by moments of a phase-space density and propose a realizability-preserving numerical method to evolve a spectral two-moment model for particles interacting with a background fluid moving with nonrelativistic velocities. The system of nonlinear moment equations, with special relativistic corrections to $\mathcal{O}(v/c)$, expresses a balance between phase-space advection and collisions and includes velocity-dependent terms that account for spatial advection, Doppler shift, and angular aberration. This model is closely related to the one promoted by Lowrie et al. (2001; JQSRT, 69, 291-304) and similar to models currently used to study transport phenomena in large-scale simulations of astrophysical environments. The method is designed to preserve moment realizability, which guarantees that the moments correspond to a nonnegative phase-space density. The realizability-preserving scheme consists of the following key components: (i) a strong stability-preserving implicit-explicit (IMEX) time-integration method; (ii) a discontinuous Galerkin (DG) phase-space discretization with carefully constructed numerical fluxes; (iii) a realizability-preserving implicit collision update; and (iv) a realizability-enforcing limiter. In time integration, nonlinearity of the moment model necessitates solution of nonlinear equations, which we formulate as fixed-point problems and solve with tailored iterative solvers that preserve moment realizability with guaranteed convergence. We also analyze the simultaneous Eulerian-frame number and energy conservation properties of the semi-discrete DG scheme and propose an "energy limiter" that promotes Eulerian-frame energy conservation. Through numerical experiments, we demonstrate the accuracy and robustness of this DG-IMEX method and investigate its Eulerian-frame energy conservation properties.
Higher-order multiway data is ubiquitous in machine learning and statistics and often exhibits community-like structures, where each component (node) along each different mode has a community membership associated with it. In this paper we propose the tensor mixed-membership blockmodel, a generalization of the tensor blockmodel positing that memberships need not be discrete, but instead are convex combinations of latent communities. We establish the identifiability of our model and propose a computationally efficient estimation procedure based on the higher-order orthogonal iteration algorithm (HOOI) for tensor SVD composed with a simplex corner-finding algorithm. We then demonstrate the consistency of our estimation procedure by providing a per-node error bound, which showcases the effect of higher-order structures on estimation accuracy. To prove our consistency result, we develop the $\ell_{2,\infty}$ tensor perturbation bound for HOOI under independent, possibly heteroskedastic, subgaussian noise that may be of independent interest. Our analysis uses a novel leave-one-out construction for the iterates, and our bounds depend only on spectral properties of the underlying low-rank tensor under nearly optimal signal-to-noise ratio conditions such that tensor SVD is computationally feasible. Whereas other leave-one-out analyses typically focus on sequences constructed by analyzing the output of a given algorithm with a small part of the noise removed, our leave-one-out analysis constructions use both the previous iterates and the additional tensor structure to eliminate a potential additional source of error. Finally, we apply our methodology to real and simulated data, including applications to two flight datasets and a trade network dataset, demonstrating some effects not identifiable from the model with discrete community memberships.
We propose $\mathbb{VD}$-$\mathbb{GR}$ - a novel visual dialog model that combines pre-trained language models (LMs) with graph neural networks (GNNs). Prior works mainly focused on one class of models at the expense of the other, thus missing out on the opportunity of combining their respective benefits. At the core of $\mathbb{VD}$-$\mathbb{GR}$ is a novel integration mechanism that alternates between spatial-temporal multi-modal GNNs and BERT layers, and that covers three distinct contributions: First, we use multi-modal GNNs to process the features of each modality (image, question, and dialog history) and exploit their local structures before performing BERT global attention. Second, we propose hub-nodes that link to all other nodes within one modality graph, allowing the model to propagate information from one GNN (modality) to the other in a cascaded manner. Third, we augment the BERT hidden states with fine-grained multi-modal GNN features before passing them to the next $\mathbb{VD}$-$\mathbb{GR}$ layer. Evaluations on VisDial v1.0, VisDial v0.9, VisDialConv, and VisPro show that $\mathbb{VD}$-$\mathbb{GR}$ achieves new state-of-the-art results across all four datasets.
In this paper we propose a local projector for truncated hierarchical B-splines (THB-splines). The local THB-spline projector is an adaptation of the B\'ezier projector proposed by Thomas et al. (Comput Methods Appl Mech Eng 284, 2015) for B-splines and analysis-suitable T-splines (AS T-splines). For THB-splines, there are elements on which the restrictions of THB-splines are linearly dependent, contrary to B-splines and AS T-splines. Therefore, we cluster certain local mesh elements together such that the THB-splines with support over these clusters are linearly independent, and the B\'ezier projector is adapted to use these clusters. We introduce general extensions for which optimal convergence is shown theoretically and numerically. In addition, a simple adaptive refinement scheme is introduced and compared to Giust et al. (Comput. Aided Geom. Des. 80, 2020), where we find that our simple approach shows promise.
We construct a monotone continuous $Q^1$ finite element method on the uniform mesh for the anisotropic diffusion problem with a diagonally dominant diffusion coefficient matrix. The monotonicity implies the discrete maximum principle. Convergence of the new scheme is rigorously proven. On quadrilateral meshes, the matrix coefficient conditions translate into specific a mesh constraint.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.
The monotonicity of discrete Laplacian implies discrete maximum principle, which in general does not hold for high order schemes. The $Q^2$ spectral element method has been proven monotone on a uniform rectangular mesh. In this paper we prove the monotonicity of the $Q^2$ spectral element method on quasi-uniform rectangular meshes under certain mesh constraints. In particular, we propose a relaxed Lorenz's condition for proving monotonicity.
Extremal Type II $\mathbb{Z}_4$-codes are a class of self-dual $\mathbb{Z}_4$-codes with Euclidean weights divisible by eight and the largest possible minimum Euclidean weight for a given length. A small number of such codes is known for lengths greater than or equal to $48.$ The doubling method is a method for constructing Type II $\mathbb{Z}_4$-codes from a given Type II $\mathbb{Z}_4$-code. Based on the doubling method, in this paper we develop a method to construct new extremal Type II $\mathbb{Z}_4$-codes starting from an extremal Type II $\mathbb{Z}_4$-code of type $4^k$ with an extremal residue code and length $48, 56$ or $64$. Using this method, we construct three new extremal Type II $\mathbb{Z}_4$-codes of length $64$ and type $4^{31}2^2$. Extremal Type II $\mathbb{Z}_4$-codes of length $64$ of this type were not known before. Moreover, the residue codes of the constructed extremal $\mathbb{Z}_4$-codes are new best known $[64,31]$ binary codes and the supports of the minimum weight codewords of the residue code and the torsion code of one of these codes form self-orthogonal $1$-designs.
Byzantine agreement (BA), the task of $n$ parties to agree on one of their input bits in the face of malicious agents, is a powerful primitive that lies at the core of a vast range of distributed protocols. Interestingly, in protocols with the best overall communication, the demands of the parties are highly unbalanced: the amortized cost is $\tilde O(1)$ bits per party, but some parties must send $\Omega(n)$ bits. In best known balanced protocols, the overall communication is sub-optimal, with each party communicating $\tilde O(\sqrt{n})$. In this work, we ask whether asymmetry is inherent for optimizing total communication. Our contributions in this line are as follows: 1) We define a cryptographic primitive, succinctly reconstructed distributed signatures (SRDS), that suffices for constructing $\tilde O(1)$ balanced BA. We provide two constructions of SRDS from different cryptographic and Public-Key Infrastructure (PKI) assumptions. 2) The SRDS-based BA follows a paradigm of boosting from "almost-everywhere" agreement to full agreement, and does so in a single round. We prove that PKI setup and cryptographic assumptions are necessary for such protocols in which every party sends $o(n)$ messages. 3) We further explore connections between a natural approach toward attaining SRDS and average-case succinct non-interactive argument systems (SNARGs) for a particular type of NP-Complete problems (generalizing Subset-Sum and Subset-Product). Our results provide new approaches forward, as well as limitations and barriers, towards minimizing per-party communication of BA. In particular, we construct the first two BA protocols with $\tilde O(1)$ balanced communication, offering a tradeoff between setup and cryptographic assumptions, and answering an open question presented by King and Saia (DISC'09).
Directional interpolation is a fast and efficient compression technique for high-frequency Helmholtz boundary integral equations, but it requires a very large amount of storage in its original form. Algebraic recompression can significantly reduce the storage requirements and speed up the solution process accordingly. During the recompression process, weight matrices are required to correctly measure the influence of different basis vectors on the final result, and for highly accurate approximations, these weight matrices require more storage than the final compressed matrix. We present a compression method for the weight matrices and demonstrate that it introduces only a controllable error to the overall approximation. Numerical experiments show that the new method leads to a significant reduction in storage requirements.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.