亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cochran's $Q$ statistic is routinely used for testing heterogeneity in meta-analysis. Its expected value (under an incorrect null distribution) is part of several popular estimators of the between-study variance, $\tau^2$. Those applications generally do not account for the studies' use of estimated variances in the inverse-variance weights that define $Q$ (more explicitly, $Q_{IV}$). Importantly, those weights make approximating the distribution of $Q_{IV}$ rather complicated. As an alternative, we are investigating a $Q$ statistic, $Q_F$, whose constant weights use only the studies' arm-level sample sizes. For log-odds-ratio, log-relative-risk, and risk difference as the measure of effect, these simulations study approximations to the distributions of $Q_F$ and $Q_{IV}$, as the basis for tests of heterogeneity. We present the results in 132 Figures, 153 pages in total.

相關內容

We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL). One of the key shortcomings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings. We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC) method. Our method only needs to perform noisy gradient descent updates to learn the exact posterior distribution of the Q function, which makes our approach easy to deploy in deep RL. We provide a rigorous theoretical analysis for the proposed method and demonstrate that, in the linear Markov decision process (linear MDP) setting, it has a regret bound of $\tilde{O}(d^{3/2}H^{5/2}\sqrt{T})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $T$ is the total number of steps. We apply this approach to deep RL, by using Adam optimizer to perform gradient updates. Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.

This paper establishes bounds on the performance of empirical risk minimization for large-dimensional linear regression. We generalize existing results by allowing the data to be dependent and heavy-tailed. The analysis covers both the cases of identically and heterogeneously distributed observations. Our analysis is nonparametric in the sense that the relationship between the regressand and the regressors is not specified. The main results of this paper show that the empirical risk minimizer achieves the optimal performance (up to a logarithmic factor) in a dependent data setting.

We present an alternative approach to decompose non-negative tensors, called many-body approximation. Traditional decomposition methods assume low-rankness in the representation, resulting in difficulties in global optimization and target rank selection. We avoid these problems by energy-based modeling of tensors, where a tensor and its mode correspond to a probability distribution and a random variable, respectively. Our model can be globally optimized in terms of the KL divergence minimization by taking the interaction between variables, i.e. modes, into account that can be tuned more intuitively than ranks. Furthermore, we visualize interactions between modes as tensor networks and reveal a nontrivial relationship between many-body approximation and low-rank approximation. We demonstrate the effectiveness of our approach in tensor completion and approximation.

Previous works on stochastic gradient descent (SGD) often focus on its success. In this work, we construct worst-case optimization problems illustrating that, when not in the regimes that the previous works often assume, SGD can exhibit many strange and potentially undesirable behaviors. Specifically, we construct landscapes and data distributions such that (1) SGD converges to local maxima, (2) SGD escapes saddle points arbitrarily slowly, (3) SGD prefers sharp minima over flat ones, and (4) AMSGrad converges to local maxima. We also realize results in a minimal neural network-like example. Our results highlight the importance of simultaneously analyzing the minibatch sampling, discrete-time updates rules, and realistic landscapes to understand the role of SGD in deep learning.

The randomized singular value decomposition (R-SVD) is a popular sketching-based algorithm for efficiently computing the partial SVD of a large matrix. When the matrix is low-rank, the R-SVD produces its partial SVD exactly; but when the rank is large, it only yields an approximation. Motivated by applications in data science and principal component analysis (PCA), we analyze the R-SVD under a low-rank signal plus noise measurement model; specifically, when its input is a spiked random matrix. The singular values produced by the R-SVD are shown to exhibit a BBP-like phase transition: when the SNR exceeds a certain detectability threshold, that depends on the dimension reduction factor, the largest singular value is an outlier; below the threshold, no outlier emerges from the bulk of singular values. We further compute asymptotic formulas for the overlap between the ground truth signal singular vectors and the approximations produced by the R-SVD. Dimensionality reduction has the adverse affect of amplifying the noise in a highly nonlinear manner. Our results demonstrate the statistical advantage -- in both signal detection and estimation -- of the R-SVD over more naive sketched PCA variants; the advantage is especially dramatic when the sketching dimension is small. Our analysis is asymptotically exact, and substantially more fine-grained than existing operator-norm error bounds for the R-SVD, which largely fail to give meaningful error estimates in the moderate SNR regime. It applies for a broad family of sketching matrices previously considered in the literature, including Gaussian i.i.d. sketches, random projections, and the sub-sampled Hadamard transform, among others. Lastly, we derive an optimal singular value shrinker for singular values and vectors obtained through the R-SVD, which may be useful for applications in matrix denoising.

Cross-validation is the standard approach for tuning parameter selection in many non-parametric regression problems. However its use is less common in change-point regression, perhaps as its prediction error-based criterion may appear to permit small spurious changes and hence be less well-suited to estimation of the number and location of change-points. We show that in fact the problems of cross-validation with squared error loss are more severe and can lead to systematic under- or over-estimation of the number of change-points, and highly suboptimal estimation of the mean function in simple settings where changes are easily detectable. We propose two simple approaches to remedy these issues, the first involving the use of absolute error rather than squared error loss, and the second involving modifying the holdout sets used. For the latter, we provide conditions that permit consistent estimation of the number of change-points for a general change-point estimation procedure. We show these conditions are satisfied for optimal partitioning using new results on its performance when supplied with the incorrect number of change-points. Numerical experiments show that the absolute error approach in particular is competitive with common change-point methods using classical tuning parameter choices when error distributions are well-specified, but can substantially outperform these in misspecified models. An implementation of our methodology is available in the R package crossvalidationCP on CRAN.

While modern Text-to-Speech (TTS) systems can produce natural-sounding speech, they remain unable to reproduce the full diversity found in natural speech data. We consider the distribution of all possible real speech samples that could be generated by these speakers alongside the distribution of all synthetic samples that could be generated for the same set of speakers, using a particular TTS system. We set out to quantify the distance between real and synthetic speech via a range of utterance-level statistics related to properties of the speaker, speech prosody and acoustic environment. Differences in the distribution of these statistics are evaluated using the Wasserstein distance. We reduce these distances by providing ground-truth values at generation time, and quantify the improvements to the overall distribution distance, approximated using an automatic speech recognition system. Our best system achieves a 10\% reduction in distribution distance.

PCA-Net is a recently proposed neural operator architecture which combines principal component analysis (PCA) with neural networks to approximate operators between infinite-dimensional function spaces. The present work develops approximation theory for this approach, improving and significantly extending previous work in this direction: First, a novel universal approximation result is derived, under minimal assumptions on the underlying operator and the data-generating distribution. Then, two potential obstacles to efficient operator learning with PCA-Net are identified, and made precise through lower complexity bounds; the first relates to the complexity of the output distribution, measured by a slow decay of the PCA eigenvalues. The other obstacle relates to the inherent complexity of the space of operators between infinite-dimensional input and output spaces, resulting in a rigorous and quantifiable statement of the curse of dimensionality. In addition to these lower bounds, upper complexity bounds are derived. A suitable smoothness criterion is shown to ensure an algebraic decay of the PCA eigenvalues. Furthermore, it is shown that PCA-Net can overcome the general curse of dimensionality for specific operators of interest, arising from the Darcy flow and the Navier-Stokes equations.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.

北京阿比特科技有限公司