We present an alternative approach to decompose non-negative tensors, called many-body approximation. Traditional decomposition methods assume low-rankness in the representation, resulting in difficulties in global optimization and target rank selection. We avoid these problems by energy-based modeling of tensors, where a tensor and its mode correspond to a probability distribution and a random variable, respectively. Our model can be globally optimized in terms of the KL divergence minimization by taking the interaction between variables, i.e. modes, into account that can be tuned more intuitively than ranks. Furthermore, we visualize interactions between modes as tensor networks and reveal a nontrivial relationship between many-body approximation and low-rank approximation. We demonstrate the effectiveness of our approach in tensor completion and approximation.
Implicit generative modeling (IGM) aims to produce samples of synthetic data matching the characteristics of a target data distribution. Recent work (e.g. score-matching networks, diffusion models) has approached the IGM problem from the perspective of pushing synthetic source data toward the target distribution via dynamical perturbations or flows in the ambient space. In this direction, we present the score difference (SD) between arbitrary target and source distributions as a flow that optimally reduces the Kullback-Leibler divergence between them while also solving the Schroedinger bridge problem. We apply the SD flow to convenient proxy distributions, which are aligned if and only if the original distributions are aligned. We demonstrate the formal equivalence of this formulation to denoising diffusion models under certain conditions. We also show that the training of generative adversarial networks includes a hidden data-optimization sub-problem, which induces the SD flow under certain choices of loss function when the discriminator is optimal. As a result, the SD flow provides a theoretical link between model classes that individually address the three challenges of the "generative modeling trilemma" -- high sample quality, mode coverage, and fast sampling -- thereby setting the stage for a unified approach.
We introduce the nested stochastic block model (NSBM) to cluster a collection of networks while simultaneously detecting communities within each network. NSBM has several appealing features including the ability to work on unlabeled networks with potentially different node sets, the flexibility to model heterogeneous communities, and the means to automatically select the number of classes for the networks and the number of communities within each network. This is accomplished via a Bayesian model, with a novel application of the nested Dirichlet process (NDP) as a prior to jointly model the between-network and within-network clusters. The dependency introduced by the network data creates nontrivial challenges for the NDP, especially in the development of efficient samplers. For posterior inference, we propose several Markov chain Monte Carlo algorithms including a standard Gibbs sampler, a collapsed Gibbs sampler, and two blocked Gibbs samplers that ultimately return two levels of clustering labels from both within and across the networks. Extensive simulation studies are carried out which demonstrate that the model provides very accurate estimates of both levels of the clustering structure. We also apply our model to two social network datasets that cannot be analyzed using any previous method in the literature due to the anonymity of the nodes and the varying number of nodes in each network.
Aiming at providing wireless communication systems with environment-perceptive capacity, emerging integrated sensing and communication (ISAC) technologies face multiple difficulties, especially in balancing the performance trade-off between the communication and radar functions. In this paper, we introduce a reconfigurable intelligent surface (RIS) to assist both data transmission and target detection in a dual-functional ISAC system. To formulate a general optimization framework, diverse communication performance metrics have been taken into account including famous capacity maximization and mean-squared error (MSE) minimization. Whereas the target detection process is modeled as a general likelihood ratio test (GLRT) due to the practical limitations, and the monotonicity of the corresponding detection probability is proved. For the single-user and single-target (SUST) scenario, the minimum transmit power of the ISAC transceiver has been revealed. By exploiting the optimal conditions of the BS design, we validate that the BS is able to realize the maximum power allocation scheme and derive the optimal BS precoder in a semi-closed form. Moreover, an alternating direction method of multipliers (ADMM) based RIS design is proposed to address the optimization of unit-modulus RIS phase shifts. For the sake of further enhancing computational efficiency, we also develop a low-complexity RIS design based on Riemannian gradient descent. Furthermore, the ISAC transceiver design for the multiple-users and multiple-targets (MUMT) scenario is also investigated, where a zero-forcing (ZF) radar receiver is adopted to cancel the interferences. Then optimal BS precoder is derived under the maximum power allocation scheme, and the RIS phase shifts can be optimized by extending the proposed ADMM-based RIS design. Numerical simulation results verify the performance of our proposed transceiver designs.
We consider hypergraph network design problems where the goal is to construct a hypergraph satisfying certain properties. In graph network design problems, the number of edges in an arbitrary solution is at most the square of the number of vertices. In contrast, in hypergraph network design problems, the number of hyperedges in an arbitrary solution could be exponential in the number of vertices and hence, additional care is necessary to design polynomial-time algorithms. The central theme of this work is to show that certain hypergraph network design problems admit solutions with polynomial number of hyperedges and moreover, can be solved in strongly polynomial time. Our work improves on the previous fastest pseudo-polynomial run-time for these problems. In addition, we develop algorithms that return (near-)uniform hypergraphs as solutions. The hypergraph network design problems that we focus upon are splitting-off operation in hypergraphs, connectivity augmentation using hyperedges, and covering skew-supermodular functions using hyperedges. Our definition of the splitting-off operation in hypergraphs and our proof showing the existence of the operation using a strongly polynomial-time algorithm to compute it are likely to be of independent graph-theoretical interest.
With the fast development of reconfigurable intelligent surface (RIS), the network topology becomes more complex and varied, which makes the network design and analysis extremely challenging. Most of the current works adopt the binary system stochastic geometric, missing the coupling relationships between the direct and reflected paths caused by RISs. In this paper, we first define the typical triangle which consists of a base station (BS), a RIS and a user equipment (UE) as the basic ternary network unit in a RIS-assisted ultra-dense network (UDN). In addition, we extend the Campbell's theorem to the ternary system and present the ternary probability generating functional (PGFL) of the stochastic geometry. Based on the ternary stochastic geometry theory, we derive and analyze the coverage probability, area spectral efficiency (ASE), area energy efficiency (AEE) and energy coverage efficiency (ECE) of the RIS-assisted UDN system. Simulation results show that the RISs can improve the system performances, especially for the UE who has a high signal to interference plus noise ratio (SINR), as if the introduced RIS brings in Matthew effect. This phenomenon of RIS is appealing for guiding the design of complex networks.
We consider gradient-related methods for low-rank matrix optimization with a smooth cost function. The methods operate on single factors of the low-rank factorization and share aspects of both alternating and Riemannian optimization. Two possible choices for the search directions based on Gauss-Southwell type selection rules are compared: one using the gradient of a factorized non-convex formulation, the other using the Riemannian gradient. While both methods provide gradient convergence guarantees that are similar to the unconstrained case, numerical experiments on a quadratic cost function indicate that the version based on the Riemannian gradient is significantly more robust with respect to small singular values and the condition number of the cost function. As a side result of our approach, we also obtain new convergence results for the alternating least squares method.
In this article, we propose two kinds of neural networks inspired by power method and inverse power method to solve linear eigenvalue problems. These neural networks share similar ideas with traditional methods, in which the differential operator is realized by automatic differentiation. The eigenfunction of the eigenvalue problem is learned by the neural network and the iterative algorithms are implemented by optimizing the specially defined loss function. The largest positive eigenvalue, smallest eigenvalue and interior eigenvalues with the given prior knowledge can be solved efficiently. We examine the applicability and accuracy of our methods in the numerical experiments in one dimension, two dimensions and higher dimensions. Numerical results show that accurate eigenvalue and eigenfunction approximations can be obtained by our methods.
We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for generating a random independent set of a tree. Our focus is obtaining optimal convergence results for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution in the hard-core model where independent sets are weighted by a parameter $\lambda>0$. Previous work of Martinelli, Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete $\Delta$-regular tree for all $\lambda$. However, Restrepo et al. (2014) showed that for sufficiently large $\lambda$ there are bounded-degree trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of bounded tree-width. We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of $O(n)$ for the Glauber dynamics for unweighted independent sets on arbitrary trees. Moreover, for $\lambda\leq .44$ we prove an optimal mixing time bound of $O(n\log{n})$. We stress that our results hold for arbitrary trees and there is no dependence on the maximum degree $\Delta$. Interestingly, our results extend (far) beyond the uniqueness threshold which is on the order $\lambda=O(1/\Delta)$. Our proof approach is inspired by recent work on spectral independence. In fact, we prove that spectral independence holds with a constant independent of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove approximate tensorization of variance/entropy via a non-trivial inductive proof.
Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis (SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper bounds. In \emph{directed} graphs, however, where only some of the upper bounds apply, much larger gaps remain. Since $d(u,v)$ may not be the same as $d(v,u)$, there are multiple ways to define the problem, the two most natural being the \emph{(one-way) diameter} ($\max_{(u,v)} d(u,v)$) and the \emph{roundtrip diameter} ($\max_{u,v} d(u,v)+d(v,u)$). In this paper we make progress on the outstanding open question for each of them. -- We design the first algorithm for diameter in sparse directed graphs to achieve $n^{1.5-\varepsilon}$ time with an approximation factor better than $2$. The new upper bound trade-off makes the directed case appear more similar to the undirected case. Notably, this is the first algorithm for diameter in sparse graphs that benefits from fast matrix multiplication. -- We design new hardness reductions separating roundtrip diameter from directed and undirected diameter. In particular, a $1.5$-approximation in subquadratic time would refute the All-Nodes $k$-Cycle hypothesis, and any $(2-\varepsilon)$-approximation would imply a breakthrough algorithm for approximate $\ell_{\infty}$-Closest-Pair. Notably, these are the first conditional lower bounds for diameter that are not based on SETH.
Semantic segmentation has made significant progress in recent years thanks to deep neural networks, but the common objective of generating a single segmentation output that accurately matches the image's content may not be suitable for safety-critical domains such as medical diagnostics and autonomous driving. Instead, multiple possible correct segmentation maps may be required to reflect the true distribution of annotation maps. In this context, stochastic semantic segmentation methods must learn to predict conditional distributions of labels given the image, but this is challenging due to the typically multimodal distributions, high-dimensional output spaces, and limited annotation data. To address these challenges, we propose a conditional categorical diffusion model (CCDM) for semantic segmentation based on Denoising Diffusion Probabilistic Models. Our model is conditioned to the input image, enabling it to generate multiple segmentation label maps that account for the aleatoric uncertainty arising from divergent ground truth annotations. Our experimental results show that CCDM achieves state-of-the-art performance on LIDC, a stochastic semantic segmentation dataset, and outperforms established baselines on the classical segmentation dataset Cityscapes.