亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the multi-user detection (MUD) problem in uplink grant-free non-orthogonal multiple access (NOMA), where the access point has to identify the total number and correct identity of the active Internet of Things (IoT) devices and decode their transmitted data. We assume that IoT devices use complex spreading sequences and transmit information in a random-access manner following the burst-sparsity model, where some IoT devices transmit their data in multiple adjacent time slots with a high probability, while others transmit only once during a frame. Exploiting the temporal correlation, we propose an attention-based bidirectional long short-term memory (BiLSTM) network to solve the MUD problem. The BiLSTM network creates a pattern of the device activation history using forward and reverse pass LSTMs, whereas the attention mechanism provides essential context to the device activation points. By doing so, a hierarchical pathway is followed for detecting active devices in a grant-free scenario. Then, by utilising the complex spreading sequences, blind data detection for the estimated active devices is performed. The proposed framework does not require prior knowledge of device sparsity levels and channels for performing MUD. The results show that the proposed network achieves better performance compared to existing benchmark schemes.

相關內容

BiLSTM是Bi-directional Long Short-Term Memory的縮寫,是由前向LSTM與后(hou)向LSTM組合而成。在自然語言處理任務中都常(chang)被(bei)用(yong)來(lai)建模上下(xia)文信息(xi)。

Innovative enhancement in embedded system platforms, specifically hardware accelerations, significantly influence the application of deep learning in real-world scenarios. These innovations translate human labor efforts into automated intelligent systems employed in various areas such as autonomous driving, robotics, Internet-of-Things (IoT), and numerous other impactful applications. NVIDIA's Jetson platform is one of the pioneers in offering optimal performance regarding energy efficiency and throughput in the execution of deep learning algorithms. Previously, most benchmarking analysis was based on 2D images with a single deep learning model for each comparison result. In this paper, we implement an end-to-end video-based crime-scene anomaly detection system inputting from surveillance videos and the system is deployed and completely operates on multiple Jetson edge devices (Nano, AGX Xavier, Orin Nano). The comparison analysis includes the integration of Torch-TensorRT as a software developer kit from NVIDIA for the model performance optimisation. The system is built based on the PySlowfast open-source project from Facebook as the coding template. The end-to-end system process comprises the videos from camera, data preprocessing pipeline, feature extractor and the anomaly detection. We provide the experience of an AI-based system deployment on various Jetson Edge devices with Docker technology. Regarding anomaly detectors, a weakly supervised video-based deep learning model called Robust Temporal Feature Magnitude Learning (RTFM) is applied in the system. The approach system reaches 47.56 frames per second (FPS) inference speed on a Jetson edge device with only 3.11 GB RAM usage total. We also discover the promising Jetson device that the AI system achieves 15% better performance than the previous version of Jetson devices while consuming 50% less energy power.

In traditional blockchain networks, transaction fees are only allocated to full nodes (i.e., miners) regardless of the contribution of forwarding behaviors of light nodes. However, the lack of forwarding incentive reduces the willingness of light nodes to relay transactions, especially in the energy-constrained Mobile Ad Hoc Network (MANET). This paper proposes a novel dual auction mechanism to allocate transaction fees for forwarding and validation behaviors in the wireless blockchain network. The dual auction mechanism consists of two auction models: the forwarding auction and the validation auction. In the forwarding auction, forwarding nodes use Generalized First Price (GFP) auction to choose transactions to forward. Besides, forwarding nodes adjust the forwarding probability through a no-regret algorithm to improve efficiency. In the validation auction, full nodes select transactions using Vickrey-Clarke-Grove (VCG) mechanism to construct the block. We prove that the designed dual auction mechanism is Incentive Compatibility (IC), Individual Rationality (IR), and Computational Efficiency (CE). Especially, we derive the upper bound of the social welfare difference between the social optimal auction and our proposed one. Extensive simulation results demonstrate that the proposed dual auction mechanism decreases energy and spectrum resource consumption and effectively improves social welfare without sacrificing the throughput and the security of the wireless blockchain network.

The Function-as-a-service (FaaS) computing model has recently seen significant growth especially for highly scalable, event-driven applications. The easy-to-deploy and cost-efficient fine-grained billing of FaaS is highly attractive to big data applications. However, the stateless nature of serverless platforms poses major challenges when supporting stateful I/O intensive workloads such as a lack of native support for stateful execution, state sharing, and inter-function communication. In this paper, we explore the feasibility of performing stateful big data analytics on serverless platforms and improving I/O throughput of functions by using modern storage technologies such as Intel Optane DC Persistent Memory (PMEM). To this end, we propose Marvel, an end-to-end architecture built on top of the popular serverless platform, Apache OpenWhisk and Apache Hadoop. Marvel makes two main contributions: (1) enable stateful function execution on OpenWhisk by maintaining state information in an in-memory caching layer; and (2) provide access to PMEM backed HDFS storage for faster I/O performance. Our evaluation shows that Marvel reduces the overall execution time of big data applications by up to 86.6% compared to current MapReduce implementations on AWS Lambda.

Removing clutter from scenes is essential in many applications, ranging from privacy-concerned content filtering to data augmentation. In this work, we present an automatic system that removes clutter from 3D scenes and inpaints with coherent geometry and texture. We propose techniques for its two key components: 3D segmentation from shared properties and 3D inpainting, both of which are important problems. The definition of 3D scene clutter (frequently-moving objects) is not well captured by commonly-studied object categories in computer vision. To tackle the lack of well-defined clutter annotations, we group noisy fine-grained labels, leverage virtual rendering, and impose an instance-level area-sensitive loss. Once clutter is removed, we inpaint geometry and texture in the resulting holes by merging inpainted RGB-D images. This requires novel voting and pruning strategies that guarantee multi-view consistency across individually inpainted images for mesh reconstruction. Experiments on ScanNet and Matterport dataset show that our method outperforms baselines for clutter segmentation and 3D inpainting, both visually and quantitatively.

Whilst contrastive learning yields powerful representations by matching different augmented views of the same instance, it lacks the ability to capture the similarities between different instances. One popular way to address this limitation is by learning global features (after the global pooling) to capture inter-instance relationships based on knowledge distillation, where the global features of the teacher are used to guide the learning of the global features of the student. Inspired by cross-modality learning, we extend this existing framework that only learns from global features by encouraging the global features and intermediate layer features to learn from each other. This leads to our novel self-supervised framework: cross-context learning between global and hypercolumn features (CGH), that enforces the consistency of instance relations between low- and high-level semantics. Specifically, we stack the intermediate feature maps to construct a hypercolumn representation so that we can measure instance relations using two contexts (hypercolumn and global feature) separately, and then use the relations of one context to guide the learning of the other. This cross-context learning allows the model to learn from the differences between the two contexts. The experimental results on linear classification and downstream tasks show that our method outperforms the state-of-the-art methods.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

We present Meena, a multi-turn open-domain chatbot trained end-to-end on data mined and filtered from public domain social media conversations. This 2.6B parameter neural network is trained to minimize perplexity, an automatic metric that we compare against human judgement of multi-turn conversation quality. To capture this judgement, we propose a human evaluation metric called Sensibleness and Specificity Average (SSA), which captures key elements of good conversation. Interestingly, our experiments show strong correlation between perplexity and SSA. The fact that the best perplexity end-to-end trained Meena scores high on SSA (72% on multi-turn evaluation) suggests that a human-level SSA of 86% is potentially within reach if we can better optimize perplexity. Additionally, the full version of Meena (with a filtering mechanism and tuned decoding) scores 79% SSA, 23% higher than the next highest scoring chatbot that we evaluated.

Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities' relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司