In this paper, we propose a new algorithm, the irrational-window-filter projection method (IWFPM), for solving arbitrary dimensional global quasiperiodic systems. Based on the projection method (PM), IWFPM further utilizes the concentrated distribution of Fourier coefficients to filter out relevant spectral points using an irrational window. Moreover, a corresponding index-shift transform is designed to make the Fast Fourier Transform available. The corresponding error analysis on the function approximation level is also given. We apply IWFPM to 1D, 2D, and 3D quasiperiodic Schr\"odinger eigenproblems to demonstrate its accuracy and efficiency. IWFPM exhibits a significant computational advantage over PM for both extended and localized quantum states. Furthermore, the widespread existence of such spectral point distribution feature can endow IWFPM with significant potential for broader applications in quasiperiodic systems.
Based on the mathematical-physical model of pavement mechanics, a multilayer elastic system with interlayer friction conditions is constructed. Given the complex boundary conditions, the corresponding variational inequalities of the partial differential equations are derived, so that the problem can be analyzed under the variational framework. First, the existence and uniqueness of the solution of the variational inequality is proved; then the approximation error of the numerical solution based on the finite element method is analyzed, and when the finite element space satisfies certain approximation conditions, the convergence of the numerical solution is proved; finally, in the trivial finite element space, the convergence order of the numerical solution is derived. The above conclusions provide basic theoretical support for solving the displacement-strain problem of multilayer elastic systems under the framework of variational inequalities.
In this paper we give a broad overview of the intersection of partial differential equations (PDEs) and graph-based semi-supervised learning. The overview is focused on a large body of recent work on PDE continuum limits of graph-based learning, which have been used to prove well-posedness of semi-supervised learning algorithms in the large data limit. We highlight some interesting research directions revolving around consistency of graph-based semi-supervised learning, and present some new results on the consistency of $p$-Laplacian semi-supervised learning using the stochastic tug-of-war game interpretation of the $p$-Laplacian. We also present the results of some numerical experiments that illustrate our results and suggest directions for future work.
We use a Gaussian Process Regression (GPR) strategy that was recently developed [3,16,17] to analyze different types of curves that are commonly encountered in parametric eigenvalue problems. We employ an offline-online decomposition method. In the offline phase, we generate the basis of the reduced space by applying the proper orthogonal decomposition (POD) method on a collection of pre-computed, full-order snapshots at a chosen set of parameters. Then, we generate our GPR model using four different Mat\'{e}rn covariance functions. In the online phase, we use this model to predict both eigenvalues and eigenvectors at new parameters. We then illustrate how the choice of each covariance function influences the performance of GPR. Furthermore, we discuss the connection between Gaussian Process Regression and spline methods and compare the performance of the GPR method against linear and cubic spline methods. We show that GPR outperforms other methods for functions with a certain regularity.
In this work, we propose two information generating functions: general weighted information and relative information generating functions, and study their properties. { It is shown that the general weighted information generating function (GWIGF) is shift-dependent and can be expressed in terms of the weighted Shannon entropy. The GWIGF of a transformed random variable has been obtained in terms of the GWIGF of a known distribution. Several bounds of the GWIGF have been proposed. We have obtained sufficient conditions under which the GWIGFs of two distributions are comparable. Further, we have established a connection between the weighted varentropy and varentropy with proposed GWIGF. An upper bound for GWIGF of the sum of two independent random variables is derived. The effect of general weighted relative information generating function (GWRIGF) for two transformed random variables under strictly monotone functions has been studied. } Further, these information generating functions are studied for escort, generalized escort and mixture distributions. {Specially, we propose weighted $\beta$-cross informational energy and establish a close connection with GWIGF for escort distribution.} The residual versions of the newly proposed generating functions are considered and several similar properties have been explored. A non-parametric estimator of the residual general weighted information generating function is proposed. A simulated data set and two real data sets are considered for the purpose of illustration. { Finally, we have compared the non-parametric approach with a parametric approach in terms of the absolute bias and mean squared error values.}
We present algorithms and a C code to reveal quantum contextuality and evaluate the contextuality degree (a way to quantify contextuality) for a variety of point-line geometries located in binary symplectic polar spaces of small rank. With this code we were not only able to recover, in a more efficient way, all the results of a recent paper by de Boutray et al [(2022). Journal of Physics A: Mathematical and Theoretical 55 475301], but also arrived at a bunch of new noteworthy results. The paper first describes the algorithms and the C code. Then it illustrates its power on a number of subspaces of symplectic polar spaces whose rank ranges from 2 to 7. The most interesting new results include: (i) non-contextuality of configurations whose contexts are subspaces of dimension 2 and higher, (ii) non-existence of negative subspaces of dimension 3 and higher, (iii) considerably improved bounds for the contextuality degree of both elliptic and hyperbolic quadrics for rank 4, as well as for a particular subgeometry of the three-qubit space whose contexts are the lines of this space, (iv) proof for the non-contextuality of perpsets and, last but not least, (v) contextual nature of a distinguished subgeometry of a multi-qubit doily, called a two-spread, and computation of its contextuality degree. Finally, in the three-qubit polar space we correct and improve the contextuality degree of the full configuration and also describe finite geometric configurations formed by unsatisfiable/invalid constraints for both types of quadrics as well as for the geometry whose contexts are all 315 lines of the space.
In this paper, to address the optimization problem on a compact matrix manifold, we introduce a novel algorithmic framework called the Transformed Gradient Projection (TGP) algorithm, using the projection onto this compact matrix manifold. Compared with the existing algorithms, the key innovation in our approach lies in the utilization of a new class of search directions and various stepsizes, including the Armijo, nonmonotone Armijo, and fixed stepsizes, to guide the selection of the next iterate. Our framework offers flexibility by encompassing the classical gradient projection algorithms as special cases, and intersecting the retraction-based line-search algorithms. Notably, our focus is on the Stiefel or Grassmann manifold, revealing that many existing algorithms in the literature can be seen as specific instances within our proposed framework, and this algorithmic framework also induces several new special cases. Then, we conduct a thorough exploration of the convergence properties of these algorithms, considering various search directions and stepsizes. To achieve this, we extensively analyze the geometric properties of the projection onto compact matrix manifolds, allowing us to extend classical inequalities related to retractions from the literature. Building upon these insights, we establish the weak convergence, convergence rate, and global convergence of TGP algorithms under three distinct stepsizes. In cases where the compact matrix manifold is the Stiefel or Grassmann manifold, our convergence results either encompass or surpass those found in the literature. Finally, through a series of numerical experiments, we observe that the TGP algorithms, owing to their increased flexibility in choosing search directions, outperform classical gradient projection and retraction-based line-search algorithms in several scenarios.
In this paper, we investigate the problem of strong approximation of the solution of SDEs in the case when the drift coefficient is given in the integral form. Such drift often appears when analyzing stochastic dynamics of optimization procedures in machine learning problems. We discuss connections of the defined randomized Euler approximation scheme with the perturbed version of the stochastic gradient descent (SGD) algorithm. We investigate its upper error bounds, in terms of the discretization parameter n and the size M of the random sample drawn at each step of the algorithm, in different subclasses of coefficients of the underlying SDE. Finally, the results of numerical experiments performed by using GPU architecture are also reported.
This paper presents a novel approach for constructing graph neural networks equivariant to 2D rotations and translations and leveraging them as PDE surrogates on non-gridded domains. We show that aligning the representations with the principal axis allows us to sidestep many constraints while preserving SE(2) equivariance. By applying our model as a surrogate for fluid flow simulations and conducting thorough benchmarks against non-equivariant models, we demonstrate significant gains in terms of both data efficiency and accuracy.
The problems of optimal recovering univariate functions and their derivatives are studied. To solve these problems, two variants of the truncation method are constructed, which are order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information. For numerical summation, it has been established how the parameters characterizing the problem being solved affect its stability.
In this paper, we propose to decompose the canonical parameter of a multinomial model into a set of participant scores and category scores. Both sets of scores are linearly constraint to represent external information about the participants and categories. For the estimation of the parameters of the decomposition, we derive a majorization-minimization algorithm. We place special emphasis on the case where the categories represent profiles of binary response variables. In that case, the multinomial model becomes a regression model for multiple binary response variables and researchers might be interested in the relationship of an external variable for the participant (i.e., a predictor) and one of the binary response variable or in the relationship between this predictor and the association among binary response variables. We derive interpretational rules for these relationships in terms of changes in log odds or log odds ratios. Connections between our multinomial canonical decomposition and loglinear models, multinomial logistic regression, multinomial reduced rank logistic regression, and double constrained correspondence analysis are discussed. We illustrate our methodology with two empirical data sets.