亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, a high-order moment-based multi-resolution Hermite weighted essentially non-oscillatory (HWENO) scheme is designed for hyperbolic conservation laws. The main idea of this scheme is derived from our previous work [J. Comput. Phys., 446 (2021) 110653], in which the integral averages of the function and its first order derivative are used to reconstruct both the function and its first order derivative values at the boundaries. However, in this paper, only the function values at the Gauss-Lobatto points in the one or two dimensional case need to be reconstructed by using the information of the zeroth and first order moments. In addition, an extra modification procedure is used to modify those first order moments in the troubled-cells, which leads to an improvement of stability and an enhancement of resolution near discontinuities. To obtain the same order of accuracy, the size of the stencil required by this moment-based multi-resolution HWENO scheme is still the same as the general HWENO scheme and is more compact than the general WENO scheme. Moreover, the linear weights can also be any positive numbers as long as their sum equals one and the CFL number can still be 0.6 whether for the one or two dimensional case. Extensive numerical examples are given to demonstrate the stability and resolution of such moment-based multi-resolution HWENO scheme.

相關內容

We consider the problem of enumerating optimal solutions for two hypergraph $k$-partitioning problems -- namely, Hypergraph-$k$-Cut and Minmax-Hypergraph-$k$-Partition. The input in hypergraph $k$-partitioning problems is a hypergraph $G=(V, E)$ with positive hyperedge costs along with a fixed positive integer $k$. The goal is to find a partition of $V$ into $k$ non-empty parts $(V_1, V_2, \ldots, V_k)$ -- known as a $k$-partition -- so as to minimize an objective of interest. 1. If the objective of interest is the maximum cut value of the parts, then the problem is known as Minmax-Hypergraph-$k$-Partition. A subset of hyperedges is a minmax-$k$-cut-set if it is the subset of hyperedges crossing an optimum $k$-partition for Minmax-Hypergraph-$k$-Partition. 2. If the objective of interest is the total cost of hyperedges crossing the $k$-partition, then the problem is known as Hypergraph-$k$-Cut. A subset of hyperedges is a min-$k$-cut-set if it is the subset of hyperedges crossing an optimum $k$-partition for Hypergraph-$k$-Cut. We give the first polynomial bound on the number of minmax-$k$-cut-sets and a polynomial-time algorithm to enumerate all of them in hypergraphs for every fixed $k$. Our technique is strong enough to also enable an $n^{O(k)}p$-time deterministic algorithm to enumerate all min-$k$-cut-sets in hypergraphs, thus improving on the previously known $n^{O(k^2)}p$-time deterministic algorithm, where $n$ is the number of vertices and $p$ is the size of the hypergraph. The correctness analysis of our enumeration approach relies on a structural result that is a strong and unifying generalization of known structural results for Hypergraph-$k$-Cut and Minmax-Hypergraph-$k$-Partition. We believe that our structural result is likely to be of independent interest in the theory of hypergraphs (and graphs).

Mixed-dimensional elliptic equations exhibiting a hierarchical structure are commonly used to model problems with high aspect ratio inclusions, such as flow in fractured porous media. We derive general abstract estimates based on the theory of functional a posteriori error estimates, for which guaranteed upper bounds for the primal and dual variables and two-sided bounds for the primal-dual pair are obtained. We improve on the abstract results obtained with the functional approach by proposing four different ways of estimating the residual errors based on the extent the approximate solution has conservation properties, i.e.: (1) no conservation, (2) subdomain conservation, (3) grid-level conservation, and (4) exact conservation. This treatment results in sharper and fully computable estimates when mass is conserved either at the grid level or exactly, with a comparable structure to those obtained from grid-based a posteriori techniques. We demonstrate the practical effectiveness of our theoretical results through numerical experiments using four different discretization methods for synthetic problems and applications based on benchmarks of flow in fractured porous media.

In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach. It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.

In this work, we introduce a novel approach to formulating an artificial viscosity for shock capturing in nonlinear hyperbolic systems by utilizing the property that the solutions of hyperbolic conservation laws are not reversible in time in the vicinity of shocks. The proposed approach does not require any additional governing equations or a priori knowledge of the hyperbolic system in question, is independent of the mesh and approximation order, and requires the use of only one tunable parameter. The primary novelty is that the resulting artificial viscosity is unique for each component of the conservation law which is advantageous for systems in which some components exhibit discontinuities while others do not. The efficacy of the method is shown in numerical experiments of multi-dimensional hyperbolic conservation laws such as nonlinear transport, Euler equations, and ideal magnetohydrodynamics using a high-order discontinuous spectral element method on unstructured grids.

This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, roughly studies the convergence order thus find that the low-order error of GFDM makes the convergence order of GFDM lower than that of FDM when node spacing is small, and points out the significant effect of the symmetry or uniformity of the node collocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied hyperbolic two-phase porous flow problem and the elliptic problems when GFDM is applied.

Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a {\em dynamic setting}, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [HWC17]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of $(1+\epsilon)r^2$ and an update time of $O(\text{poly} (r, \log n))$, where $r$ denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (near-optimal) approximation ratio of $(1+\epsilon)$ that is independent of $r$, and a similar update time of $O(\text{poly} (r, \log n))$. It is the first $(1+\epsilon)$-approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on large-scale, real-world data-sets. Our algorithm significantly outperforms the state of the art [HWC17] both in terms of accuracy and efficiency.

We study an implicit finite-volume scheme for non-linear, non-local aggregation-diffusion equations which exhibit a gradient-flow structure, recently introduced by Bailo, Carrillo, and Hu (2020). Crucially, this scheme keeps the dissipation property of an associated fully discrete energy, and does so unconditionally with respect to the time step. Our main contribution in this work is to show the convergence of the method under suitable assumptions on the diffusion functions and potentials involved.

We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modelling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in space and time with inf-sup stable pairs of finite elements for the spatial approximation of the unknowns are investigated. Optimal order error estimates of energy-type are proven. Superconvergence at the time nodes is addressed briefly. The error analysis can be extended to discontinuous and enriched Galerkin space discretizations. The error estimates are confirmed by numerical experiments.

We introduce a finite volume scheme to solve isotropic 3-wave kinetic equations. We test our numerical solution against theoretical results concerning the long time behavior of the energy and observe that our solutions verify the energy cascade phenomenon. To our knowledge, this is the first numerical scheme that can capture the long time asymptotic behavior of solutions to isotropic 3-wave kinetic equations, where the energy cascade can be observed. Our numerical energy cascade rates are in good agreement with previously obtained theoretical results. The finite volume scheme given here relies on a new identity, allowing one to reduce the number of terms needed in the collision operators.

In this paper, a third order gas kinetic scheme is developed on the three dimensional hybrid unstructured meshes for the numerical simulation of compressible inviscid and viscous flows. A third-order WENO reconstruction is developed on the hybrid unstructured meshes, including tetrahedron, pyramid, prism and hexahedron. A simple strategy is adopted for the selection of big stencil and sub-stencils. Incorporate with the two-stage fourth-order temporal discretization and lower-upper symmetric Gauss-Seidel methods, both explicit and implicit high-order gas-kinetic schemes are developed. A variety of numerical examples, from the subsonic to supersonic flows, are presented to validate the accuracy and robustness for both inviscid and viscous flows.

北京阿比特科技有限公司