亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While significant advancements in artificial intelligence (AI) have catalyzed progress across various domains, its full potential in understanding visual perception remains underexplored. We propose an artificial neural network dubbed VISION, an acronym for "Visual Interface System for Imaging Output of Neural activity," to mimic the human brain and show how it can foster neuroscientific inquiries. Using visual and contextual inputs, this multimodal model predicts the brain's functional magnetic resonance imaging (fMRI) scan response to natural images. VISION successfully predicts human hemodynamic responses as fMRI voxel values to visual inputs with an accuracy exceeding state-of-the-art performance by 45%. We further probe the trained networks to reveal representational biases in different visual areas, generate experimentally testable hypotheses, and formulate an interpretable metric to associate these hypotheses with cortical functions. With both a model and evaluation metric, the cost and time burdens associated with designing and implementing functional analysis on the visual cortex could be reduced. Our work suggests that the evolution of computational models may shed light on our fundamental understanding of the visual cortex and provide a viable approach toward reliable brain-machine interfaces.

相關內容

With the remarkable progress that technology has made, the need for processing data near the sensors at the edge has increased dramatically. The electronic systems used in these applications must process data continuously, in real-time, and extract relevant information using the smallest possible energy budgets. A promising approach for implementing always-on processing of sensory signals that supports on-demand, sparse, and edge-computing is to take inspiration from biological nervous system. Following this approach, we present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs). The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays. The analog circuits that implement such primitives are paired with a low latency asynchronous digital circuits for routing and mapping events. This asynchronous infrastructure enables the definition of different network architectures, and provides direct event-based interfaces to convert and encode data from event-based and continuous-signal sensors. Here we describe the overall system architecture, we characterize the mixed signal analog-digital circuits that emulate neural dynamics, demonstrate their features with experimental measurements, and present a low- and high-level software ecosystem that can be used for configuring the system. The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.

Nowadays, deep-learning image coding solutions have shown similar or better compression efficiency than conventional solutions based on hand-crafted transforms and spatial prediction techniques. These deep-learning codecs require a large training set of images and a training methodology to obtain a suitable model (set of parameters) for efficient compression. The training is performed with an optimization algorithm which provides a way to minimize the loss function. Therefore, the loss function plays a key role in the overall performance and includes a differentiable quality metric that attempts to mimic human perception. The main objective of this paper is to study the perceptual impact of several image quality metrics that can be used in the loss function of the training process, through a crowdsourcing subjective image quality assessment study. From this study, it is possible to conclude that the choice of the quality metric is critical for the perceptual performance of the deep-learning codec and that can vary depending on the image content.

The ability to synthesize realistic data in a parametrizable way is valuable for a number of reasons, including privacy, missing data imputation, and evaluating the performance of statistical and computational methods. When the underlying data generating process is complex, data synthesis requires approaches that balance realism and simplicity. In this paper, we address the problem of synthesizing sequential categorical data of the type that is increasingly available from mobile applications and sensors that record participant status continuously over the course of multiple days and weeks. We propose the paired Markov Chain (paired-MC) method, a flexible framework that produces sequences that closely mimic real data while providing a straightforward mechanism for modifying characteristics of the synthesized sequences. We demonstrate the paired-MC method on two datasets, one reflecting daily human activity patterns collected via a smartphone application, and one encoding the intensities of physical activity measured by wearable accelerometers. In both settings, sequences synthesized by paired-MC better capture key characteristics of the real data than alternative approaches.

This study explores the intersection of information technology-based self-monitoring (ITSM) and emotional responses in chronic care. It critiques the lack of theoretical depth in current ITSM research and proposes a dynamic emotion process theory to understand ITSM's impact on users' emotions. Utilizing computational grounded theory and machine learning analysis of hypertension app reviews, the research seeks to extend emotion theory by examining ITSM stimuli and their influence on emotional episodes, moving beyond discrete emotion models towards a continuous, nuanced understanding of emotional responses.

Several visual tasks, such as pedestrian detection and image-to-image translation, are challenging to accomplish in low light using RGB images. Heat variation of objects in thermal images can be used to overcome this. In this work, an end-to-end framework, which consists of a generative network and a detector network, is proposed to translate RGB image into Thermal ones and compare generated thermal images with real data. We have collected images from two different locations using the Parrot Anafi Thermal drone. After that, we created a two-stream network, preprocessed, augmented, the image data, and trained the generator and discriminator models from scratch. The findings demonstrate that it is feasible to translate RGB training data to thermal data using GAN. As a result, thermal data can now be produced more quickly and affordably, which is useful for security and surveillance applications.

Despite the limited availability and quantum volume of quantum computers, quantum image representation is a widely researched area. Currently developed methods use quantum entanglement to encode information about pixel positions. These methods range from using the angle parameter of the rotation gate (e.g., the Flexible Representation of Quantum Images, FRQI), sequences of qubits (e.g., Novel Enhanced Quantum Representation, NEQR), or the angle parameter of the phase shift gates (e.g., Local Phase Image Quantum Encoding, LPIQE) for storing color information. All these methods are significantly affected by decoherence and other forms of quantum noise, which is an inseparable part of quantum computing in the noisy intermediate-scale quantum era. These phenomena can highly influence the measurements and result in extracted images that are visually dissimilar to the originals. Because this process is at its foundation quantum, the computational reversal of this process is possible. There are many methods for error correction, mitigation, and reduction, but all of them use quantum computer time or additional qubits to achieve the desired result. We report the successful use of a generative adversarial network trained for image-to-image translation, in conjunction with Phase Distortion Unraveling error reduction method, for reducing overall error in images encoded using LPIQE.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司