Matrix completion aims to estimate missing entries in a data matrix, using the assumption of a low-complexity structure (e.g., low rank) so that imputation is possible. While many effective estimation algorithms exist in the literature, uncertainty quantification for this problem has proved to be challenging, and existing methods are extremely sensitive to model misspecification. In this work, we propose a distribution-free method for predictive inference in the matrix completion problem. Our method adapts the framework of conformal prediction, which provides confidence intervals with guaranteed distribution-free validity in the setting of regression, to the problem of matrix completion. Our resulting method, conformalized matrix completion (cmc), offers provable predictive coverage regardless of the accuracy of the low-rank model. Empirical results on simulated and real data demonstrate that cmc is robust to model misspecification while matching the performance of existing model-based methods when the model is correct.
Obtaining rigorous statistical guarantees for generalization under distribution shift remains an open and active research area. We study a setting we call combinatorial distribution shift, where (a) under the test- and training-distributions, the labels $z$ are determined by pairs of features $(x,y)$, (b) the training distribution has coverage of certain marginal distributions over $x$ and $y$ separately, but (c) the test distribution involves examples from a product distribution over $(x,y)$ that is {not} covered by the training distribution. Focusing on the special case where the labels are given by bilinear embeddings into a Hilbert space $H$: $\mathbb{E}[z \mid x,y ]=\langle f_{\star}(x),g_{\star}(y)\rangle_{{H}}$, we aim to extrapolate to a test distribution domain that is $not$ covered in training, i.e., achieving bilinear combinatorial extrapolation. Our setting generalizes a special case of matrix completion from missing-not-at-random data, for which all existing results require the ground-truth matrices to be either exactly low-rank, or to exhibit very sharp spectral cutoffs. In this work, we develop a series of theoretical results that enable bilinear combinatorial extrapolation under gradual spectral decay as observed in typical high-dimensional data, including novel algorithms, generalization guarantees, and linear-algebraic results. A key tool is a novel perturbation bound for the rank-$k$ singular value decomposition approximations between two matrices that depends on the relative spectral gap rather than the absolute spectral gap, a result that may be of broader independent interest.
Despite the progress in medical data collection the actual burden of SARS-CoV-2 remains unknown due to under-ascertainment of cases. This was apparent in the acute phase of the pandemic and the use of reported deaths has been pointed out as a more reliable source of information, likely less prone to under-reporting. Since daily deaths occur from past infections weighted by their probability of death, one may infer the total number of infections accounting for their age distribution, using the data on reported deaths. We adopt this framework and assume that the dynamics generating the total number of infections can be described by a continuous time transmission model expressed through a system of non-linear ordinary differential equations where the transmission rate is modelled as a diffusion process allowing to reveal both the effect of control strategies and the changes in individuals behavior. We develop this flexible Bayesian tool in Stan and study 3 pairs of European countries, estimating the time-varying reproduction number($R_t$) as well as the true cumulative number of infected individuals. As we estimate the true number of infections we offer a more accurate estimate of $R_t$. We also provide an estimate of the daily reporting ratio and discuss the effects of changes in mobility and testing on the inferred quantities.
In this article, we propose a reduced basis method for parametrized non-symmetric eigenvalue problems arising in the loading pattern optimization of a nuclear core in neutronics. To this end, we derive a posteriori error estimates for the eigenvalue and left and right eigenvectors. The practical computation of these estimators requires the estimation of a constant called prefactor, which we can express as the spectral norm of some operator. We provide some elements of theoretical analysis which illustrate the link between the expression of the prefactor we obtain here and its well-known expression in the case of symmetric eigenvalue problems, either using the notion of numerical range of the operator, or via a perturbative analysis. Lastly, we propose a practical method in order to estimate this prefactor which yields interesting numerical results on actual test cases. We provide detailed numerical simulations on two-dimensional examples including a multigroup neutron diffusion equation.
We consider the estimation of factor model-based variance-covariance matrix when the factor loading matrix is assumed sparse. To do so, we rely on a system of penalized estimating functions to account for the identification issue of the factor loading matrix while fostering sparsity in potentially all its entries. We prove the oracle property of the penalized estimator for the factor model when the dimension is fixed. That is, the penalization procedure can recover the true sparse support, and the estimator is asymptotically normally distributed. Consistency and recovery of the true zero entries are established when the number of parameters is diverging. These theoretical results are supported by simulation experiments, and the relevance of the proposed method is illustrated by an application to portfolio allocation.
The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction $\Pi$ will almost certainly be nonorthogonal (and divergent) in any known inner product, meaning $\|\Pi\| > 1$. This introduces a new consideration, that one wants coarse-grid correction to be as close to orthogonal as possible, in an appropriate norm. In addition, due to non-orthogonality, $\Pi$ may actually amplify certain error modes that are in the range of interpolation. Relaxation must then not only be complementary to interpolation, but also rapidly eliminate any error amplified by the non-orthogonal correction, or the algorithm may diverge. This note develops analytic formulae on how to construct ``compatible'' transfer operators in nonsymmetric AMG such that $\|\Pi\| = 1$ in any standard matrix-induced norm. Discussion is provided on different options for norm in the nonsymmetric setting, the relation between ``ideal'' transfer operators in different norms, and insight into the convergence of nonsymmetric reduction-based AMG.
Correlation matrices are an essential tool for investigating the dependency structures of random vectors or comparing them. We introduce an approach for testing a variety of null hypotheses that can be formulated based upon the correlation matrix. Examples cover MANOVA-type hypothesis of equal correlation matrices as well as testing for special correlation structures such as, e.g., sphericity. Apart from existing fourth moments, our approach requires no other assumptions, allowing applications in various settings. To improve the small sample performance, a bootstrap technique is proposed and theoretically justified. Based on this, we also present a procedure to simultaneously test the hypotheses of equal correlation and equal covariance matrices. The performance of all new test statistics is compared with existing procedures through extensive simulations.
Given a sequence of observable variables $\{(x_1, y_1), \ldots, (x_n, y_n)\}$, the conformal prediction method estimates a confidence set for $y_{n+1}$ given $x_{n+1}$ that is valid for any finite sample size by merely assuming that the joint distribution of the data is permutation invariant. Although attractive, computing such a set is computationally infeasible in most regression problems. Indeed, in these cases, the unknown variable $y_{n+1}$ can take an infinite number of possible candidate values, and generating conformal sets requires retraining a predictive model for each candidate. In this paper, we focus on a sparse linear model with only a subset of variables for prediction and use numerical continuation techniques to approximate the solution path efficiently. The critical property we exploit is that the set of selected variables is invariant under a small perturbation of the input data. Therefore, it is sufficient to enumerate and refit the model only at the change points of the set of active features and smoothly interpolate the rest of the solution via a Predictor-Corrector mechanism. We show how our path-following algorithm accurately approximates conformal prediction sets and illustrate its performance using synthetic and real data examples.
We analyze the convergence properties of Fermat distances, a family of density-driven metrics defined on Riemannian manifolds with an associated probability measure. Fermat distances may be defined either on discrete samples from the underlying measure, in which case they are random, or in the continuum setting, in which they are induced by geodesics under a density-distorted Riemannian metric. We prove that discrete, sample-based Fermat distances converge to their continuum analogues in small neighborhoods with a precise rate that depends on the intrinsic dimensionality of the data and the parameter governing the extent of density weighting in Fermat distances. This is done by leveraging novel geometric and statistical arguments in percolation theory that allow for non-uniform densities and curved domains. Our results are then used to prove that discrete graph Laplacians based on discrete, sample-driven Fermat distances converge to corresponding continuum operators. In particular, we show the discrete eigenvalues and eigenvectors converge to their continuum analogues at a dimension-dependent rate, which allows us to interpret the efficacy of discrete spectral clustering using Fermat distances in terms of the resulting continuum limit. The perspective afforded by our discrete-to-continuum Fermat distance analysis leads to new clustering algorithms for data and related insights into efficient computations associated to density-driven spectral clustering. Our theoretical analysis is supported with numerical simulations and experiments on synthetic and real image data.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.