亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we apply the median-of-means principle to derive robust versions of local averaging rules in non-parametric regression. For various estimates, including nearest neighbors and kernel procedures, we obtain non-asymptotic exponential inequalities, with only a second moment assumption on the noise. We then show that these bounds cannot be significantly improved by establishing a corresponding lower bound on tail probabilities.

相關內容

The coresets approach, also called subsampling or subset selection, aims to select a subsample as a surrogate for the observed sample. Such an approach has been used pervasively in large-scale data analysis. Existing coresets methods construct the subsample using a subset of rows from the predictor matrix. Such methods can be significantly inefficient when the predictor matrix is sparse or numerically sparse. To overcome the limitation, we develop a novel element-wise subset selection approach, called core-elements, for large-scale least squares estimation in classical linear regression. We provide a deterministic algorithm to construct the core-elements estimator, only requiring an $O(\mbox{nnz}(\mathbf{X})+rp^2)$ computational cost, where $\mathbf{X}$ is an $n\times p$ predictor matrix, $r$ is the number of elements selected from each column of $\mathbf{X}$, and $\mbox{nnz}(\cdot)$ denotes the number of non-zero elements. Theoretically, we show that the proposed estimator is unbiased and approximately minimizes an upper bound of the estimation variance. We also provide an approximation guarantee by deriving a coresets-like finite sample bound for the proposed estimator. To handle potential outliers in the data, we further combine core-elements with the median-of-means procedure, resulting in an efficient and robust estimator with theoretical consistency guarantees. Numerical studies on various synthetic and open-source datasets demonstrate the proposed method's superior performance compared to mainstream competitors.

Blind source separation (BSS) aims to recover an unobserved signal $S$ from its mixture $X=f(S)$ under the condition that the effecting transformation $f$ is invertible but unknown. As this is a basic problem with many practical applications, a fundamental issue is to understand how the solutions to this problem behave when their supporting statistical prior assumptions are violated. In the classical context of linear mixtures, we present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$. Modelling $S$ as a multidimensional stochastic process, we introduce an informative topology on the space of possible causes underlying a mixture $X$, and show that the behaviour of a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees with respect to this topology. This allows for a flexible and convenient quantification of general model uncertainty scenarios and amounts to the first comprehensive robustness framework for BSS. Our approach is entirely constructive, and we demonstrate its utility with novel theoretical guarantees for a number of statistical applications.

Flexible Bayesian models are typically constructed using limits of large parametric models with a multitude of parameters that are often uninterpretable. In this article, we offer a novel alternative by constructing an exponentially tilted empirical likelihood carefully designed to concentrate near a parametric family of distributions of choice with respect to a novel variant of the Wasserstein metric, which is then combined with a prior distribution on model parameters to obtain a robustified posterior. The proposed approach finds applications in a wide variety of robust inference problems, where we intend to perform inference on the parameters associated with the centering distribution in presence of outliers. Our proposed transport metric enjoys great computational simplicity, exploiting the Sinkhorn regularization for discrete optimal transport problems, and being inherently parallelizable. We demonstrate superior performance of our methodology when compared against state-of-the-art robust Bayesian inference methods. We also demonstrate equivalence of our approach with a nonparametric Bayesian formulation under a suitable asymptotic framework, testifying to its flexibility. The constrained entropy maximization that sits at the heart of our likelihood formulation finds its utility beyond robust Bayesian inference; an illustration is provided in a trustworthy machine learning application.

High-dimensional regression and regression with a left-censored response are each well-studied topics. In spite of this, few methods have been proposed which deal with both of these complications simultaneously. The Tobit model -- long the standard method for censored regression in economics -- has not been adapted for high-dimensional regression at all. To fill this gap and bring up-to-date techniques from high-dimensional statistics to the field of high-dimensional left-censored regression, we propose several penalized Tobit models. We develop a fast algorithm which combines quadratic minimization with coordinate descent to compute the penalized Tobit solution path. Theoretically, we analyze the Tobit lasso and Tobit with a folded concave penalty, bounding the $\ell_2$ estimation loss for the former and proving that a local linear approximation estimator for the latter possesses the strong oracle property. Through an extensive simulation study, we find that our penalized Tobit models provide more accurate predictions and parameter estimates than other methods. We use a penalized Tobit model to analyze high-dimensional left-censored HIV viral load data from the AIDS Clinical Trials Group and identify potential drug resistance mutations in the HIV genome. Appendices contain intermediate theoretical results and technical proofs.

This paper studies model checking for general parametric regression models with no dimension reduction structures on the high-dimensional vector of predictors. Using existing test as an initial test, this paper combines the sample-splitting technique and conditional studentization approach to construct a COnditionally Studentized Test(COST). Unlike existing tests, whether the initial test is global or local smoothing-based, and whether the dimension of the predictor vector and the number of parameters are fixed, or diverge at a certain rate as the sample size goes to infinity, the proposed test always has a normal weak limit under the null hypothesis. Further, the test can detect the local alternatives distinct from the null hypothesis at the fastest possible rate of convergence in hypothesis testing. We also discuss the optimal sample splitting in power performance. The numerical studies offer information on its merits and limitations in finite sample cases. As a generic methodology, it could be applied to other testing problems.

Linear regression is a fundamental tool for statistical analysis. This has motivated the development of linear regression methods that also satisfy differential privacy and thus guarantee that the learned model reveals little about any one data point used to construct it. However, existing differentially private solutions assume that the end user can easily specify good data bounds and hyperparameters. Both present significant practical obstacles. In this paper, we study an algorithm which uses the exponential mechanism to select a model with high Tukey depth from a collection of non-private regression models. Given $n$ samples of $d$-dimensional data used to train $m$ models, we construct an efficient analogue using an approximate Tukey depth that runs in time $O(d^2n + dm\log(m))$. We find that this algorithm obtains strong empirical performance in the data-rich setting with no data bounds or hyperparameter selection required.

The weak maximum principle of the isoparametric finite element method is proved for the Poisson equation under the Dirichlet boundary condition in a (possibly concave) curvilinear polyhedral domain with edge openings smaller than $\pi$, which include smooth domains and smooth deformations of convex polyhedra. The proof relies on the analysis of a dual elliptic problem with a discontinuous coefficient matrix arising from the isoparametric finite elements. Therefore, the standard $H^2$ elliptic regularity which is required in the proof of the weak maximum principle in the literature does not hold for this dual problem. To overcome this difficulty, we have decomposed the solution into a smooth part and a nonsmooth part, and estimated the two parts by $H^2$ and $W^{1,p}$ estimates, respectively. As an application of the weak maximum principle, we have proved a maximum-norm best approximation property of the isoparametric finite element method for the Poisson equation in a curvilinear polyhedron. The proof contains non-trivial modifications of Schatz's argument due to the non-conformity of the iso-parametric finite elements, which requires us to construct a globally smooth flow map which maps the curvilinear polyhedron to a perturbed larger domain on which we can establish the $W^{1,\infty}$ regularity estimate of the Poisson equation uniformly with respect to the perturbation.

The matrix sensing problem is an important low-rank optimization problem that has found a wide range of applications, such as matrix completion, phase synchornization/retrieval, robust PCA, and power system state estimation. In this work, we focus on the general matrix sensing problem with linear measurements that are corrupted by random noise. We investigate the scenario where the search rank $r$ is equal to the true rank $r^*$ of the unknown ground truth (the exact parametrized case), as well as the scenario where $r$ is greater than $r^*$ (the overparametrized case). We quantify the role of the restricted isometry property (RIP) in shaping the landscape of the non-convex factorized formulation and assisting with the success of local search algorithms. First, we develop a global guarantee on the maximum distance between an arbitrary local minimizer of the non-convex problem and the ground truth under the assumption that the RIP constant is smaller than $1/(1+\sqrt{r^*/r})$. We then present a local guarantee for problems with an arbitrary RIP constant, which states that any local minimizer is either considerably close to the ground truth or far away from it. More importantly, we prove that this noisy, overparametrized problem exhibits the strict saddle property, which leads to the global convergence of perturbed gradient descent algorithm in polynomial time. The results of this work provide a comprehensive understanding of the geometric landscape of the matrix sensing problem in the noisy and overparametrized regime.

Dependence is undoubtedly a central concept in statistics. Though, it proves difficult to locate in the literature a formal definition which goes beyond the self-evident 'dependence = non-independence'. This absence has allowed the term 'dependence' and its declination to be used vaguely and indiscriminately for qualifying a variety of disparate notions, leading to numerous incongruities. For example, the classical Pearson's, Spearman's or Kendall's correlations are widely regarded as 'dependence measures' of major interest, in spite of returning 0 in some cases of deterministic relationships between the variables at play, evidently not measuring dependence at all. Arguing that research on such a fundamental topic would benefit from a slightly more rigid framework, this paper suggests a general definition of the dependence between two random variables defined on the same probability space. Natural enough for aligning with intuition, that definition is still sufficiently precise for allowing unequivocal identification of a 'universal' representation of the dependence structure of any bivariate distribution. Links between this representation and familiar concepts are highlighted, and ultimately, the idea of a dependence measure based on that universal representation is explored and shown to satisfy Renyi's postulates.

The Chebyshev or $\ell_{\infty}$ estimator is an unconventional alternative to the ordinary least squares in solving linear regressions. It is defined as the minimizer of the $\ell_{\infty}$ objective function \begin{align*} \hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} \|\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta}\|_{\infty}. \end{align*} The asymptotic distribution of the Chebyshev estimator under fixed number of covariates was recently studied (Knight, 2020), yet finite sample guarantees and generalizations to high-dimensional settings remain open. In this paper, we develop non-asymptotic upper bounds on the estimation error $\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^*\|_2$ for a Chebyshev estimator $\hat{\boldsymbol{\beta}}$, in a regression setting with uniformly distributed noise $\varepsilon_i\sim U([-a,a])$ where $a$ is either known or unknown. With relatively mild assumptions on the (random) design matrix $\mathbf{X}$, we can bound the error rate by $\frac{C_p}{n}$ with high probability, for some constant $C_p$ depending on the dimension $p$ and the law of the design. Furthermore, we illustrate that there exist designs for which the Chebyshev estimator is (nearly) minimax optimal. On the other hand we also argue that there exist designs for which this estimator behaves sub-optimally in terms of the constant $C_p$'s dependence on $p$. In addition we show that "Chebyshev's LASSO" has advantages over the regular LASSO in high dimensional situations, provided that the noise is uniform. Specifically, we argue that it achieves a much faster rate of estimation under certain assumptions on the growth rate of the sparsity level and the ambient dimension with respect to the sample size.

北京阿比特科技有限公司