亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents novel experiments shedding light on the shortcomings of current metrics for assessing biases of gender discrimination made by machine learning algorithms on textual data. We focus on the Bios dataset, and our learning task is to predict the occupation of individuals, based on their biography. Such prediction tasks are common in commercial Natural Language Processing (NLP) applications such as automatic job recommendations. We address an important limitation of theoretical discussions dealing with group-wise fairness metrics: they focus on large datasets, although the norm in many industrial NLP applications is to use small to reasonably large linguistic datasets for which the main practical constraint is to get a good prediction accuracy. We then question how reliable are different popular measures of bias when the size of the training set is simply sufficient to learn reasonably accurate predictions. Our experiments sample the Bios dataset and learn more than 200 models on different sample sizes. This allows us to statistically study our results and to confirm that common gender bias indices provide diverging and sometimes unreliable results when applied to relatively small training and test samples. This highlights the crucial importance of variance calculations for providing sound results in this field.

相關內容

The growth of systems complexity increases the need of automated techniques dedicated to different log analysis tasks such as Log-based Anomaly Detection (LAD). The latter has been widely addressed in the literature, mostly by means of different deep learning techniques. Nevertheless, the focus on deep learning techniques results in less attention being paid to traditional Machine Learning (ML) techniques, which may perform well in many cases, depending on the context and the used datasets. Further, the evaluation of different ML techniques is mostly based on the assessment of their detection accuracy. However, this is is not enough to decide whether or not a specific ML technique is suitable to address the LAD problem. Other aspects to consider include the training and prediction time as well as the sensitivity to hyperparameter tuning. In this paper, we present a comprehensive empirical study, in which we evaluate different supervised and semi-supervised, traditional and deep ML techniques w.r.t. four evaluation criteria: detection accuracy, time performance, sensitivity of detection accuracy as well as time performance to hyperparameter tuning. The experimental results show that supervised traditional and deep ML techniques perform very closely in terms of their detection accuracy and prediction time. Moreover, the overall evaluation of the sensitivity of the detection accuracy of the different ML techniques to hyperparameter tuning shows that supervised traditional ML techniques are less sensitive to hyperparameter tuning than deep learning techniques. Further, semi-supervised techniques yield significantly worse detection accuracy than supervised techniques.

Online social media is rife with offensive and hateful comments, prompting the need for their automatic detection given the sheer amount of posts created every second. Creating high-quality human-labelled datasets for this task is difficult and costly, especially because non-offensive posts are significantly more frequent than offensive ones. However, unlabelled data is abundant, easier, and cheaper to obtain. In this scenario, self-training methods, using weakly-labelled examples to increase the amount of training data, can be employed. Recent "noisy" self-training approaches incorporate data augmentation techniques to ensure prediction consistency and increase robustness against noisy data and adversarial attacks. In this paper, we experiment with default and noisy self-training using three different textual data augmentation techniques across five different pre-trained BERT architectures varying in size. We evaluate our experiments on two offensive/hate-speech datasets and demonstrate that (i) self-training consistently improves performance regardless of model size, resulting in up to +1.5% F1-macro on both datasets, and (ii) noisy self-training with textual data augmentations, despite being successfully applied in similar settings, decreases performance on offensive and hate-speech domains when compared to the default method, even with state-of-the-art augmentations such as backtranslation.

The pre-training and fine-tuning paradigm has contributed to a number of breakthroughs in Natural Language Processing (NLP). Instead of directly training on a downstream task, language models are first pre-trained on large datasets with cross-domain knowledge (e.g., Pile, MassiveText, etc.) and then fine-tuned on task-specific data (e.g., natural language generation, text summarization, etc.). Scaling the model and dataset size has helped improve the performance of LLMs, but unfortunately, this also lead to highly prohibitive computational costs. Pre-training LLMs often require orders of magnitude more FLOPs than fine-tuning and the model capacity often remains the same between the two phases. To achieve training efficiency w.r.t training FLOPs, we propose to decouple the model capacity between the two phases and introduce Sparse Pre-training and Dense Fine-tuning (SPDF). In this work, we show the benefits of using unstructured weight sparsity to train only a subset of weights during pre-training (Sparse Pre-training) and then recover the representational capacity by allowing the zeroed weights to learn (Dense Fine-tuning). We demonstrate that we can induce up to 75% sparsity into a 1.3B parameter GPT-3 XL model resulting in a 2.5x reduction in pre-training FLOPs, without a significant loss in accuracy on the downstream tasks relative to the dense baseline. By rigorously evaluating multiple downstream tasks, we also establish a relationship between sparsity, task complexity and dataset size. Our work presents a promising direction to train large GPT models at a fraction of the training FLOPs using weight sparsity, while retaining the benefits of pre-trained textual representations for downstream tasks.

Clinical trials are vital in advancing drug development and evidence-based medicine, but their success is often hindered by challenges in patient recruitment. In this work, we investigate the potential of large language models (LLMs) to assist individual patients and referral physicians in identifying suitable clinical trials from an extensive selection. Specifically, we introduce TrialGPT, a novel architecture employing LLMs to predict criterion-level eligibility with detailed explanations, which are then aggregated for ranking and excluding candidate clinical trials based on free-text patient notes. We evaluate TrialGPT on three publicly available cohorts of 184 patients and 18,238 annotated clinical trials. The experimental results demonstrate several key findings: First, TrialGPT achieves high criterion-level prediction accuracy with faithful explanations. Second, the aggregated trial-level TrialGPT scores are highly correlated with expert eligibility annotations. Third, these scores prove effective in ranking clinical trials and exclude ineligible candidates. Our error analysis suggests that current LLMs still make some mistakes due to limited medical knowledge and domain-specific context understanding. Nonetheless, we believe the explanatory capabilities of LLMs are highly valuable. Future research is warranted on how such AI assistants can be integrated into the routine trial matching workflow in real-world settings to improve its efficiency.

Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers. Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data. However, training these algorithms can be challenging and calls for tailored optimization procedures. Specifically, QML applications can require a large shot-count overhead due to the large datasets involved. In this work, we advocate for simultaneous random sampling over both the dataset as well as the measurement operators that define the loss function. We consider a highly general loss function that encompasses many QML applications, and we show how to construct an unbiased estimator of its gradient. This allows us to propose a shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save several orders of magnitude in shot cost, even relative to optimizers that sample over measurement operators alone.

Most group fairness notions detect unethical biases by computing statistical parity metrics on a model's output. However, this approach suffers from several shortcomings, such as philosophical disagreement, mutual incompatibility, and lack of interpretability. These shortcomings have spurred the research on complementary bias detection methods that offer additional transparency into the sources of discrimination and are agnostic towards an a priori decision on the definition of fairness and choice of protected features. A recent proposal in this direction is LUCID (Locating Unfairness through Canonical Inverse Design), where canonical sets are generated by performing gradient descent on the input space, revealing a model's desired input given a preferred output. This information about the model's mechanisms, i.e., which feature values are essential to obtain specific outputs, allows exposing potential unethical biases in its internal logic. Here, we present LUCID-GAN, which generates canonical inputs via a conditional generative model instead of gradient-based inverse design. LUCID-GAN has several benefits, including that it applies to non-differentiable models, ensures that canonical sets consist of realistic inputs, and allows to assess proxy and intersectional discrimination. We empirically evaluate LUCID-GAN on the UCI Adult and COMPAS data sets and show that it allows for detecting unethical biases in black-box models without requiring access to the training data.

Open-set segmentation is often conceived by complementing closed-set classification with anomaly detection. Existing dense anomaly detectors operate either through generative modelling of regular training data or by discriminating with respect to negative training data. These two approaches optimize different objectives and therefore exhibit different failure modes. Consequently, we propose the first dense hybrid anomaly score that fuses generative and discriminative cues. The proposed score can be efficiently implemented by upgrading any semantic segmentation model with dense estimates of data likelihood and dataset posterior. Our design is a remarkably good fit for efficient inference on large images due to negligible computational overhead over the closed-set baseline. The resulting dense hybrid open-set models require negative training images that can be sampled from an auxiliary negative dataset, from a jointly trained generative model, or from a mixture of both sources. We evaluate our contributions on benchmarks for dense anomaly detection and open-set segmentation. The experiments reveal strong open-set performance in spite of negligible computational overhead.

An end-to-end machine learning (ML) lifecycle consists of many iterative processes, from data preparation and ML model design to model training and then deploying the trained model for inference. When building an end-to-end lifecycle for an ML problem, many ML pipelines must be designed and executed that produce a huge number of lifecycle versions. Therefore, this paper introduces VeML, a Version management system dedicated to end-to-end ML Lifecycle. Our system tackles several crucial problems that other systems have not solved. First, we address the high cost of building an ML lifecycle, especially for large-scale and high-dimensional dataset. We solve this problem by proposing to transfer the lifecycle of similar datasets managed in our system to the new training data. We design an algorithm based on the core set to compute similarity for large-scale, high-dimensional data efficiently. Another critical issue is the model accuracy degradation by the difference between training data and testing data during the ML lifetime, which leads to lifecycle rebuild. Our system helps to detect this mismatch without getting labeled data from testing data and rebuild the ML lifecycle for a new data version. To demonstrate our contributions, we conduct experiments on real-world, large-scale datasets of driving images and spatiotemporal sensor data and show promising results.

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.

北京阿比特科技有限公司