亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) encounters scalability challenges when implemented over fog networks. Semi-decentralized FL (SD-FL) proposes a solution that divides model cooperation into two stages: at the lower stage, device-to-device (D2D) communications is employed for local model aggregations within subnetworks (subnets), while the upper stage handles device-server (DS) communications for global model aggregations. However, existing SD-FL schemes are based on gradient diversity assumptions that become performance bottlenecks as data distributions become more heterogeneous. In this work, we develop semi-decentralized gradient tracking (SD-GT), the first SD-FL methodology that removes the need for such assumptions by incorporating tracking terms into device updates for each communication layer. Analytical characterization of SD-GT reveals convergence upper bounds for both non-convex and strongly-convex problems, for a suitable choice of step size. We employ the resulting bounds in the development of a co-optimization algorithm for optimizing subnet sampling rates and D2D rounds according to a performance-efficiency trade-off. Our subsequent numerical evaluations demonstrate that SD-GT obtains substantial improvements in trained model quality and communication cost relative to baselines in SD-FL and gradient tracking on several datasets.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 模態 · MoDELS · Learning · 情景 ·
2024 年 1 月 30 日

Multimodal federated learning (FL) aims to enrich model training in FL settings where clients are collecting measurements across multiple modalities. However, key challenges to multimodal FL remain unaddressed, particularly in heterogeneous network settings where: (i) the set of modalities collected by each client will be diverse, and (ii) communication limitations prevent clients from uploading all their locally trained modality models to the server. In this paper, we propose multimodal Federated learning with joint Modality and Client selection (mmFedMC), a new FL methodology that can tackle the above-mentioned challenges in multimodal settings. The joint selection algorithm incorporates two main components: (a) A modality selection methodology for each client, which weighs (i) the impact of the modality, gauged by Shapley value analysis, (ii) the modality model size as a gauge of communication overhead, against (iii) the frequency of modality model updates, denoted recency, to enhance generalizability. (b) A client selection strategy for the server based on the local loss of modality model at each client. Experiments on five real-world datasets demonstrate the ability of mmFedMC to achieve comparable accuracy to several baselines while reducing the communication overhead by over 20x. A demo video of our methodology is available at //liangqiy.com/mmfedmc/.

Deep learning methods can not only detect false data injection attacks (FDIA) but also locate attacks of FDIA. Although adversarial false data injection attacks (AFDIA) based on deep learning vulnerabilities have been studied in the field of single-label FDIA detection, the adversarial attack and defense against multi-label FDIA locational detection are still not involved. To bridge this gap, this paper first explores the multi-label adversarial example attacks against multi-label FDIA locational detectors and proposes a general multi-label adversarial attack framework, namely muLti-labEl adverSarial falSe data injectiON attack (LESSON). The proposed LESSON attack framework includes three key designs, namely Perturbing State Variables, Tailored Loss Function Design, and Change of Variables, which can help find suitable multi-label adversarial perturbations within the physical constraints to circumvent both Bad Data Detection (BDD) and Neural Attack Location (NAL). Four typical LESSON attacks based on the proposed framework and two dimensions of attack objectives are examined, and the experimental results demonstrate the effectiveness of the proposed attack framework, posing serious and pressing security concerns in smart grids.

We study the problem of in-context learning (ICL) with large language models (LLMs) on private datasets. This scenario poses privacy risks, as LLMs may leak or regurgitate the private examples demonstrated in the prompt. We propose a novel algorithm that generates synthetic few-shot demonstrations from the private dataset with formal differential privacy (DP) guarantees, and show empirically that it can achieve effective ICL. We conduct extensive experiments on standard benchmarks and compare our algorithm with non-private ICL and zero-shot solutions. Our results demonstrate that our algorithm can achieve competitive performance with strong privacy levels. These results open up new possibilities for ICL with privacy protection for a broad range of applications.

Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered convergence. While prior studies predominantly addressed the issue of skewed label distribution, our research addresses a crucial yet frequently overlooked problem known as multi-domain FL. In this scenario, clients' data originate from diverse domains with distinct feature distributions, instead of label distributions. To address the multi-domain problem in FL, we propose a novel method called Federated learning Without normalizations (FedWon). FedWon draws inspiration from the observation that batch normalization (BN) faces challenges in effectively modeling the statistics of multiple domains, while existing normalization techniques possess their own limitations. In order to address these issues, FedWon eliminates the normalization layers in FL and reparameterizes convolution layers with scaled weight standardization. Through extensive experimentation on five datasets and five models, our comprehensive experimental results demonstrate that FedWon surpasses both FedAvg and the current state-of-the-art method (FedBN) across all experimental setups, achieving notable accuracy improvements of more than 10% in certain domains. Furthermore, FedWon is versatile for both cross-silo and cross-device FL, exhibiting robust domain generalization capability, showcasing strong performance even with a batch size as small as 1, thereby catering to resource-constrained devices. Additionally, FedWon can also effectively tackle the challenge of skewed label distribution.

Deep learning have achieved promising results on a wide spectrum of AI applications. Larger datasets and models consistently yield better performance. However, we generally spend longer training time on more computation and communication. In this survey, we aim to provide a clear sketch about the optimizations for large-scale deep learning with regard to the model accuracy and model efficiency. We investigate algorithms that are most commonly used for optimizing, elaborate the debatable topic of generalization gap arises in large-batch training, and review the SOTA strategies in addressing the communication overhead and reducing the memory footprints.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

北京阿比特科技有限公司