亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Both Byzantine resilience and communication efficiency have attracted tremendous attention recently for their significance in edge federated learning. However, most existing algorithms may fail when dealing with real-world irregular data that behaves in a heavy-tailed manner. To address this issue, we study the stochastic convex and non-convex optimization problem for federated learning at edge and show how to handle heavy-tailed data while retaining the Byzantine resilience, communication efficiency and the optimal statistical error rates simultaneously. Specifically, we first present a Byzantine-resilient distributed gradient descent algorithm that can handle the heavy-tailed data and meanwhile converge under the standard assumptions. To reduce the communication overhead, we further propose another algorithm that incorporates gradient compression techniques to save communication costs during the learning process. Theoretical analysis shows that our algorithms achieve order-optimal statistical error rate in presence of Byzantine devices. Finally, we conduct extensive experiments on both synthetic and real-world datasets to verify the efficacy of our algorithms.

相關內容

Auction-based Federated Learning (AFL) has attracted extensive research interest due to its ability to motivate data owners to join FL through economic means. Existing works assume that only one data consumer and multiple data owners exist in an AFL marketplace (i.e., a monopoly market). Therefore, data owners bid to join the data consumer for FL. However, this assumption is not realistic in practical AFL marketplaces in which multiple data consumers can compete to attract data owners to join their respective FL tasks. In this paper, we bridge this gap by proposing a first-of-its-kind utility-maximizing bidding strategy for data consumers in federated learning (Fed-Bidder). It enables multiple FL data consumers to compete for data owners via AFL effectively and efficiently by providing with utility estimation capabilities which can accommodate diverse forms of winning functions, each reflecting different market dynamics. Extensive experiments based on six commonly adopted benchmark datasets show that Fed-Bidder is significantly more advantageous compared to four state-of-the-art approaches.

Linear real-valued computations over distributed datasets are common in many applications, most notably as part of machine learning inference. In particular, linear computations which are quantized, i.e., where the coefficients are restricted to a predetermined set of values (such as $\pm 1$), gained increasing interest lately due to their role in efficient, robust, or private machine learning models. Given a dataset to store in a distributed system, we wish to encode it so that all such computations could be conducted by accessing a small number of servers, called the access parameter of the system. Doing so relieves the remaining servers to execute other tasks, and reduces the overall communication in the system. Minimizing the access parameter gives rise to an access-redundancy tradeoff, where smaller access parameter requires more redundancy in the system, and vice versa. In this paper we study this tradeoff, and provide several explicit code constructions based on covering codes in a novel way. While the connection to covering codes has been observed in the past, our results strictly outperform the state-of-the-art, and extend the framework to new families of computations.

Traditional blockchain design gives miners or validators full control over transaction ordering, i.e.,~they can freely choose which transactions to include or exclude, as well as in which order. While not an issue initially, the emergence of decentralized finance has introduced new transaction order dependencies allowing parties in control of the ordering to make a profit by front-running others' transactions. In this work, we present the Decentralized Clock Network, a new approach for achieving fair transaction ordering. Users submit their transactions to the network's clocks, which run an agreement protocol that provides each transaction with a timestamp of receipt which is then used to define the transactions' order. By separating agreement from ordering, our protocol is efficient and has a simpler design compared to other available solutions. Moreover, our protocol brings to the blockchain world the paradigm of asynchronous fallback, where the algorithm operates with stronger fairness guarantees during periods of synchronous use, switching to an asynchronous mode only during times of increased network delay.

We propose a novel hierarchical Bayesian approach to Federated Learning (FL), where our model reasonably describes the generative process of clients' local data via hierarchical Bayesian modeling: constituting random variables of local models for clients that are governed by a higher-level global variate. Interestingly, the variational inference in our Bayesian model leads to an optimisation problem whose block-coordinate descent solution becomes a distributed algorithm that is separable over clients and allows them not to reveal their own private data at all, thus fully compatible with FL. We also highlight that our block-coordinate algorithm has particular forms that subsume the well-known FL algorithms including Fed-Avg and Fed-Prox as special cases. Beyond introducing novel modeling and derivations, we also offer convergence analysis showing that our block-coordinate FL algorithm converges to an (local) optimum of the objective at the rate of $O(1/\sqrt{t})$, the same rate as regular (centralised) SGD, as well as the generalisation error analysis where we prove that the test error of our model on unseen data is guaranteed to vanish as we increase the training data size, thus asymptotically optimal.

In a multi-agent system, agents can cooperatively learn a model from data by exchanging their estimated model parameters, without the need to exchange the locally available data used by the agents. This strategy, often called federated learning, is mainly employed for two reasons: (i) improving resource-efficiency by avoiding to share potentially large datasets and (ii) guaranteeing privacy of local agents' data. Efficiency can be further increased by adopting a beyond-5G communication strategy that goes under the name of Over-the-Air Computation. This strategy exploits the interference property of the wireless channel. Standard communication schemes prevent interference by enabling transmissions of signals from different agents at distinct time or frequency slots, which is not required with Over-the-Air Computation, thus saving resources. In this case, the received signal is a weighted sum of transmitted signals, with unknown weights (fading channel coefficients). State of the art papers in the field aim at reconstructing those unknown coefficients. In contrast, the approach presented here does not require reconstructing channel coefficients by complex encoding-decoding schemes. This improves both efficiency and privacy.

We analyze the impact of transient and Byzantine faults on the construction of a maximal independent set in a general network. We adapt the self-stabilizing algorithm presented by Turau `for computing such a vertex set. Our algorithm is self-stabilizing and also works under the more difficult context of arbitrary Byzantine faults. Byzantine nodes can prevent nodes close to them from taking part in the independent set for an arbitrarily long time. We give boundaries to their impact by focusing on the set of all nodes excluding nodes at distance 1 or less of Byzantine nodes, and excluding some of the nodes at distance 2. As far as we know, we present the first algorithm tolerating both transient and Byzantine faults under the fair distributed daemon. We prove that this algorithm converges in $ \mathcal O(\Delta n)$ rounds w.h.p., where $n$ and $\Delta$ are the size and the maximum degree of the network, resp. Additionally, we present a modified version of this algorithm for anonymous systems under the adversarial distributed daemon that converges in $ \mathcal O(n^{2})$ expected number of steps.

We tackle the problem of joint frequency and power allocation while emphasizing the generalization capability of a deep reinforcement learning model. Most of the existing methods solve reinforcement learning-based wireless problems for a specific pre-determined wireless network scenario. The performance of a trained agent tends to be very specific to the network and deteriorates when used in a different network operating scenario (e.g., different in size, neighborhood, and mobility, among others). We demonstrate our approach to enhance training to enable a higher generalization capability during inference of the deployed model in a distributed multi-agent setting in a hostile jamming environment. With all these, we show the improved training and inference performance of the proposed methods when tested on previously unseen simulated wireless networks of different sizes and architectures. More importantly, to prove practical impact, the end-to-end solution was implemented on the embedded software-defined radio and validated using over-the-air evaluation.

Over-the-air Computation (AirComp) has been demonstrated as an effective transmission scheme to boost the efficiency of federated edge learning (FEEL). However, existing FEEL systems with AirComp scheme often employ traditional synchronous aggregation mechanisms for local model aggregation in each global round, which suffer from the stragglers issues. In this paper, we propose a semi-asynchronous aggregation FEEL mechanism with AirComp scheme (PAOTA) to improve the training efficiency of the FEEL system in the case of significant heterogeneity in data and devices. Taking the staleness and divergence of model updates from edge devices into consideration, we minimize the convergence upper bound of the FEEL global model by adjusting the uplink transmit power of edge devices at each aggregation period. The simulation results demonstrate that our proposed algorithm achieves convergence performance close to that of the ideal Local SGD. Furthermore, with the same target accuracy, the training time required for PAOTA is less than that of the ideal Local SGD and the synchronous FEEL algorithm via AirComp.

Federated edge learning (FEEL) is a popular distributed learning framework for privacy-preserving at the edge, in which densely distributed edge devices periodically exchange model-updates with the server to complete the global model training. Due to limited bandwidth and uncertain wireless environment, FEEL may impose heavy burden to the current communication system. In addition, under the common FEEL framework, the server needs to wait for the slowest device to complete the update uploading before starting the aggregation process, leading to the straggler issue that causes prolonged communication time. In this paper, we propose to accelerate FEEL from two aspects: i.e., 1) performing data compression on the edge devices and 2) setting a deadline on the edge server to exclude the straggler devices. However, undesired gradient compression errors and transmission outage are introduced by the aforementioned operations respectively, affecting the convergence of FEEL as well. In view of these practical issues, we formulate a training time minimization problem, with the compression ratio and deadline to be optimized. To this end, an asymptotically unbiased aggregation scheme is first proposed to ensure zero optimality gap after convergence, and the impact of compression error and transmission outage on the overall training time are quantified through convergence analysis. Then, the formulated problem is solved in an alternating manner, based on which, the novel joint compression and deadline optimization (JCDO) algorithm is derived. Numerical experiments for different use cases in FEEL including image classification and autonomous driving show that the proposed method is nearly 30X faster than the vanilla FedAVG algorithm, and outperforms the state-of-the-art schemes.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

北京阿比特科技有限公司