In this paper, we propose a high-precision SRAM-based CIM macro that can perform 4x4-bit MAC operations and yield 9-bit signed output. The inherent discharge branches of SRAM cells are utilized to apply time-modulated MAC and 9-bit ADC readout operations on two bit-line capacitors. The same principle is used for both MAC and A-to-D conversion ensuring high linearity and thus supporting large number of analog MAC accumulations. The memory cell-embedded ADC eliminates the use of separate ADCs and enhances energy and area efficiency. Additionally, two signal margin enhancement techniques, namely the MAC-folding and boosted-clipping schemes, are proposed to further improve the CIM computation accuracy.
In this paper, we investigate the use of transformers for Neural Machine Translation of text-to-GLOSS for Deaf and Hard-of-Hearing communication. Due to the scarcity of available data and limited resources for text-to-GLOSS translation, we treat the problem as a low-resource language task. We use our novel hyper-parameter exploration technique to explore a variety of architectural parameters and build an optimal transformer-based architecture specifically tailored for text-to-GLOSS translation. The study aims to improve the accuracy and fluency of Neural Machine Translation generated GLOSS. This is achieved by examining various architectural parameters including layer count, attention heads, embedding dimension, dropout, and label smoothing to identify the optimal architecture for improving text-to-GLOSS translation performance. The experiments conducted on the PHOENIX14T dataset reveal that the optimal transformer architecture outperforms previous work on the same dataset. The best model reaches a ROUGE (Recall-Oriented Understudy for Gisting Evaluation) score of 55.18% and a BLEU-1 (BiLingual Evaluation Understudy 1) score of 63.6%, outperforming state-of-the-art results on the BLEU1 and ROUGE score by 8.42 and 0.63 respectively.
Whole slide image (WSI) refers to a type of high-resolution scanned tissue image, which is extensively employed in computer-assisted diagnosis (CAD). The extremely high resolution and limited availability of region-level annotations make employing deep learning methods for WSI-based digital diagnosis challenging. Recently integrating multiple instance learning (MIL) and Transformer for WSI analysis shows very promising results. However, designing effective Transformers for this weakly-supervised high-resolution image analysis is an underexplored yet important problem. In this paper, we propose a Multi-level MIL (MMIL) scheme by introducing a hierarchical structure to MIL, which enables efficient handling of MIL tasks involving a large number of instances. Based on MMIL, we instantiated MMIL-Transformer, an efficient Transformer model with windowed exact self-attention for large-scale MIL tasks. To validate its effectiveness, we conducted a set of experiments on WSI classification tasks, where MMIL-Transformer demonstrate superior performance compared to existing state-of-the-art methods, i.e., 96.80% test AUC and 97.67% test accuracy on the CAMELYON16 dataset, 99.04% test AUC and 94.37% test accuracy on the TCGA-NSCLC dataset, respectively. All code and pre-trained models are available at: //github.com/hustvl/MMIL-Transformer
In this paper, we propose to extend the deep, complex U-Network architecture for speech enhancement by incorporating a probabilistic (i.e., variational) latent space model. The proposed model is evaluated against several ablated versions of itself in order to study the effects of the variational latent space model, complex-value processing, and self-attention. Evaluation on the MS-DNS 2020 and Voicebank+Demand datasets yields consistently high performance. E.g., the proposed model achieves an SI-SDR of up to 20.2 dB, about 0.5 to 1.4 dB higher than its ablated version without probabilistic latent space, 2-2.4 dB higher than WaveUNet, and 6.7 dB above PHASEN. Compared to real-valued magnitude spectrogram processing with a variational U-Net, the complex U-Net achieves an improvement of up to 4.5 dB SI-SDR. Complex spectrum encoding as magnitude and phase yields best performance in anechoic conditions whereas real and imaginary part representation results in better generalization to (novel) reverberation conditions, possibly due to the underlying physics of sound.
In this paper, we propose a probabilistic reduced-dimensional vector autoregressive (PredVAR) model with oblique projections. This model partitions the measurement space into a dynamic subspace and a static subspace that do not need to be orthogonal. The partition allows us to apply an oblique projection to extract dynamic latent variables (DLVs) from high-dimensional data with maximized predictability. We develop an alternating iterative PredVAR algorithm that exploits the interaction between updating the latent VAR dynamics and estimating the oblique projection, using expectation maximization (EM) and a statistical constraint. In addition, the noise covariance matrices are estimated as a natural outcome of the EM method. A simulation case study of the nonlinear Lorenz oscillation system illustrates the advantages of the proposed approach over two alternatives.
This paper introduces a vision transformer (ViT)-based deep joint source and channel coding (DeepJSCC) scheme for wireless image transmission over multiple-input multiple-output (MIMO) channels, denoted as DeepJSCC-MIMO. We consider DeepJSCC-MIMO for adaptive image transmission in both open-loop and closed-loop MIMO systems. The novel DeepJSCC-MIMO architecture surpasses the classical separation-based benchmarks with robustness to channel estimation errors and showcases remarkable flexibility in adapting to diverse channel conditions and antenna numbers without requiring retraining. Specifically, by harnessing the self-attention mechanism of ViT, DeepJSCC-MIMO intelligently learns feature mapping and power allocation strategies tailored to the unique characteristics of the source image and prevailing channel conditions. Extensive numerical experiments validate the significant improvements in transmission quality achieved by DeepJSCC-MIMO for both open-loop and closed-loop MIMO systems across a wide range of scenarios. Moreover, DeepJSCC-MIMO exhibits robustness to varying channel conditions, channel estimation errors, and different antenna numbers, making it an appealing solution for emerging semantic communication systems.
We propose a novel computing runtime that exposes remote compute devices via the cross-vendor open heterogeneous computing standard OpenCL and can execute compute tasks on the MEC cluster side across multiple servers in a scalable manner. Intermittent UE connection loss is handled gracefully even if the device's IP address changes on the way. Network-induced latency is minimized by transferring data and signaling command completions between remote devices in a peer-to-peer fashion directly to the target server with a streamlined TCP-based protocol that yields a command latency of only 60 microseconds on top of network round-trip latency in synthetic benchmarks. The runtime can utilize RDMA to speed up inter-server data transfers by an additional 60% compared to the TCP-based solution. The benefits of the proposed runtime in MEC applications are demonstrated with a smartphone-based augmented reality rendering case study. Measurements show up to 19x improvements to frame rate and 17x improvements to local energy consumption when using the proposed runtime to offload AR rendering from a smartphone. Scalability to multiple GPU servers in real-world applications is shown in a computational fluid dynamics simulation, which scales with the number of servers at roughly 80% efficiency which is comparable to an MPI port of the same simulation.
In this paper, we present VideoGen, a text-to-video generation approach, which can generate a high-definition video with high frame fidelity and strong temporal consistency using reference-guided latent diffusion. We leverage an off-the-shelf text-to-image generation model, e.g., Stable Diffusion, to generate an image with high content quality from the text prompt, as a reference image to guide video generation. Then, we introduce an efficient cascaded latent diffusion module conditioned on both the reference image and the text prompt, for generating latent video representations, followed by a flow-based temporal upsampling step to improve the temporal resolution. Finally, we map latent video representations into a high-definition video through an enhanced video decoder. During training, we use the first frame of a ground-truth video as the reference image for training the cascaded latent diffusion module. The main characterises of our approach include: the reference image generated by the text-to-image model improves the visual fidelity; using it as the condition makes the diffusion model focus more on learning the video dynamics; and the video decoder is trained over unlabeled video data, thus benefiting from high-quality easily-available videos. VideoGen sets a new state-of-the-art in text-to-video generation in terms of both qualitative and quantitative evaluation.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.