亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses the gradient coding and coded matrix multiplication problems in distributed optimization and coded computing. We present a numerically stable binary coding method which overcomes the drawbacks of the \textit{Fractional Repetition Coding} gradient coding method proposed by Tandon et al., and can also be leveraged by coded computing networks whose servers are of heterogeneous nature. Specifically, we propose a construction for fractional repetition gradient coding; while ensuring that the generator matrix remains close to perfectly balanced for any set of coded parameters, as well as a low complexity decoding step. The proposed binary encoding avoids operations over the real and complex numbers which are inherently numerically unstable, thereby enabling numerically stable distributed encodings of the partial gradients. We then make connections between gradient coding and coded matrix multiplication. Specifically, we show that any gradient coding scheme can be extended to coded matrix multiplication. Furthermore, we show how the proposed binary gradient coding scheme can be used to construct two different coded matrix multiplication schemes, each achieving different trade-offs.

相關內容

This paper discusses the development of synthetic cohomology in Homotopy Type Theory (HoTT), as well as its computer formalisation. The objectives of this paper are (1) to generalise previous work on integral cohomology in HoTT by the current authors and Brunerie (2022) to cohomology with arbitrary coefficients and (2) to provide the mathematical details of, as well as extend, results underpinning the computer formalisation of cohomology rings by the current authors and Lamiaux (2023). With respect to objective (1), we provide new direct definitions of the cohomology group operations and of the cup product, which, just as in (Brunerie et al., 2022), enable significant simplifications of many earlier proofs in synthetic cohomology theory. In particular, the new definition of the cup product allows us to give the first complete formalisation of the axioms needed to turn the cohomology groups into a graded commutative ring. We also establish that this cohomology theory satisfies the HoTT formulation of the Eilenberg-Steenrod axioms for cohomology and study the classical Mayer-Vietoris and Gysin sequences. With respect to objective (2), we characterise the cohomology groups and rings of various spaces, including the spheres, torus, Klein bottle, real/complex projective planes, and infinite real projective space. All results have been formalised in Cubical Agda and we obtain multiple new numbers, similar to the famous `Brunerie number', which can be used as benchmarks for computational implementations of HoTT. Some of these numbers are infeasible to compute in Cubical Agda and hence provide new computational challenges and open problems which are much easier to define than the original Brunerie number.

We propose a novel differentially private algorithm for online federated learning that employs temporally correlated noise to improve the utility while ensuring the privacy of the continuously released models. To address challenges stemming from DP noise and local updates with streaming noniid data, we develop a perturbed iterate analysis to control the impact of the DP noise on the utility. Moreover, we demonstrate how the drift errors from local updates can be effectively managed under a quasi-strong convexity condition. Subject to an $(\epsilon, \delta)$-DP budget, we establish a dynamic regret bound over the entire time horizon that quantifies the impact of key parameters and the intensity of changes in dynamic environments. Numerical experiments validate the efficacy of the proposed algorithm.

This paper considers the problem of sequentially detecting a change in the joint distribution of multiple data sources under a sampling constraint. Specifically, the channels or sources generate observations that are independent over time, but not necessarily independent at any given time instant. The sources follow an initial joint distribution, and at an unknown time instant, the joint distribution of an unknown subset of sources changes. Importantly, there is a hard constraint that only a fixed number of sources are allowed to be sampled at each time instant. The goal is to sequentially observe the sources according to the constraint, and stop sampling as quickly as possible after the change while controlling the false alarm rate below a user-specified level. The sources can be selected dynamically based on the already collected data, and thus, a policy for this problem consists of a joint sampling and change-detection rule. A non-randomized policy is studied, and an upper bound is established on its worst-case conditional expected detection delay with respect to both the change point and the observations from the affected sources before the change.

The emerging data-driven methods based on artificial intelligence (AI) have paved the way for intelligent, flexible, and adaptive network management in vehicular applications. To enhance network management towards network automation, this article presents a digital twin (DT) assisted two-tier learning framework, which facilitates the automated life-cycle management of machine learning based intelligent network management functions (INMFs). Specifically, at a high tier, meta learning is employed to capture different levels of general features for the INMFs under nonstationary network conditions. At a low tier, individual learning models are customized for local networks based on fast model adaptation. Hierarchical DTs are deployed at the edge and cloud servers to assist the two-tier learning process, through closed-loop interactions with the physical network domain. Finally, a case study demonstrates the fast and accurate model adaptation ability of meta learning in comparison with benchmark schemes.

This paper addresses the challenges of distributed formation control in multiple mobile robots, introducing a novel approach that enhances real-world practicability. We first introduce a distributed estimator using a variable structure and cascaded design technique, eliminating the need for derivative information to improve the real time performance. Then, a kinematic tracking control method is developed utilizing a bioinspired neural dynamic-based approach aimed at providing smooth control inputs and effectively resolving the speed jump issue. Furthermore, to address the challenges for robots operating with completely unknown dynamics and disturbances, a learning-based robust dynamic controller is developed. This controller provides real time parameter estimates while maintaining its robustness against disturbances. The overall stability of the proposed method is proved with rigorous mathematical analysis. At last, multiple comprehensive simulation studies have shown the advantages and effectiveness of the proposed method.

Effective coordination is crucial for motion control with reinforcement learning, especially as the complexity of agents and their motions increases. However, many existing methods struggle to account for the intricate dependencies between joints. We introduce CoordiGraph, a novel architecture that leverages subequivariant principles from physics to enhance coordination of motion control with reinforcement learning. This method embeds the principles of equivariance as inherent patterns in the learning process under gravity influence, which aids in modeling the nuanced relationships between joints vital for motion control. Through extensive experimentation with sophisticated agents in diverse environments, we highlight the merits of our approach. Compared to current leading methods, CoordiGraph notably enhances generalization and sample efficiency.

This paper investigates statistical inference for noisy matrix completion in a semi-supervised model when auxiliary covariates are available. The model consists of two parts. One part is a low-rank matrix induced by unobserved latent factors; the other part models the effects of the observed covariates through a coefficient matrix which is composed of high-dimensional column vectors. We model the observational pattern of the responses through a logistic regression of the covariates, and allow its probability to go to zero as the sample size increases. We apply an iterative least squares (LS) estimation approach in our considered context. The iterative LS methods in general enjoy a low computational cost, but deriving the statistical properties of the resulting estimators is a challenging task. We show that our method only needs a few iterations, and the resulting entry-wise estimators of the low-rank matrix and the coefficient matrix are guaranteed to have asymptotic normal distributions. As a result, individual inference can be conducted for each entry of the unknown matrices. We also propose a simultaneous testing procedure with multiplier bootstrap for the high-dimensional coefficient matrix. This simultaneous inferential tool can help us further investigate the effects of covariates for the prediction of missing entries.

This paper introduces a novel data-driven hierarchical control scheme for managing a fleet of nonlinear, capacity-constrained autonomous agents in an iterative environment. We propose a control framework consisting of a high-level dynamic task assignment and routing layer and low-level motion planning and tracking layer. Each layer of the control hierarchy uses a data-driven MPC policy, maintaining bounded computational complexity at each calculation of a new task assignment or actuation input. We utilize collected data to iteratively refine estimates of agent capacity usage, and update MPC policy parameters accordingly. Our approach leverages tools from iterative learning control to integrate learning at both levels of the hierarchy, and coordinates learning between levels in order to maintain closed-loop feasibility and performance improvement of the connected architecture.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司