亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent rapid advancements in deepfake technology have allowed the creation of highly realistic fake media, such as video, image, and audio. These materials pose significant challenges to human authentication, such as impersonation, misinformation, or even a threat to national security. To keep pace with these rapid advancements, several deepfake detection algorithms have been proposed, leading to an ongoing arms race between deepfake creators and deepfake detectors. Nevertheless, these detectors are often unreliable and frequently fail to detect deepfakes. This study highlights the challenges they face in detecting deepfakes, including (1) the pre-processing pipeline of artifacts and (2) the fact that generators of new, unseen deepfake samples have not been considered when building the defense models. Our work sheds light on the need for further research and development in this field to create more robust and reliable detectors.

相關內容

While the expressive power and computational capabilities of graph neural networks (GNNs) have been theoretically studied, their optimization and learning dynamics, in general, remain largely unexplored. Our study undertakes the Graph Attention Network (GAT), a popular GNN architecture in which a node's neighborhood aggregation is weighted by parameterized attention coefficients. We derive a conservation law of GAT gradient flow dynamics, which explains why a high portion of parameters in GATs with standard initialization struggle to change during training. This effect is amplified in deeper GATs, which perform significantly worse than their shallow counterparts. To alleviate this problem, we devise an initialization scheme that balances the GAT network. Our approach i) allows more effective propagation of gradients and in turn enables trainability of deeper networks, and ii) attains a considerable speedup in training and convergence time in comparison to the standard initialization. Our main theorem serves as a stepping stone to studying the learning dynamics of positive homogeneous models with attention mechanisms.

Weak supervision has emerged as a promising approach for rapid and large-scale dataset creation in response to the increasing demand for accelerated NLP development. By leveraging labeling functions, weak supervision allows practitioners to generate datasets quickly by creating learned label models that produce soft-labeled datasets. This paper aims to show how such an approach can be utilized to build an Indonesian NLP dataset from conservation news text. We construct two types of datasets: multi-class classification and sentiment classification. We then provide baseline experiments using various pretrained language models. These baseline results demonstrate test performances of 59.79% accuracy and 55.72% F1-score for sentiment classification, 66.87% F1-score-macro, 71.5% F1-score-micro, and 83.67% ROC-AUC for multi-class classification. Additionally, we release the datasets and labeling functions used in this work for further research and exploration.

Learning from free-text human feedback is essential for dialog systems, but annotated data is scarce and usually covers only a small fraction of error types known in conversational AI. Instead of collecting and annotating new datasets from scratch, recent advances in synthetic dialog generation could be used to augment existing dialog datasets with the necessary annotations. However, to assess the feasibility of such an effort, it is important to know the types and frequency of free-text human feedback included in these datasets. In this work, we investigate this question for a variety of commonly used dialog datasets, including MultiWoZ, SGD, BABI, PersonaChat, Wizards-of-Wikipedia, and the human-bot split of the Self-Feeding Chatbot. Using our observations, we derive new taxonomies for the annotation of free-text human feedback in dialogs and investigate the impact of including such data in response generation for three SOTA language generation models, including GPT-2, LLAMA, and Flan-T5. Our findings provide new insights into the composition of the datasets examined, including error types, user response types, and the relations between them.

Diffusion models are the de facto approach for generating high-quality images and videos, but learning high-dimensional models remains a formidable task due to computational and optimization challenges. Existing methods often resort to training cascaded models in pixel space or using a downsampled latent space of a separately trained auto-encoder. In this paper, we introduce Matryoshka Diffusion Models(MDM), an end-to-end framework for high-resolution image and video synthesis. We propose a diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small-scale inputs are nested within those of large scales. In addition, MDM enables a progressive training schedule from lower to higher resolutions, which leads to significant improvements in optimization for high-resolution generation. We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications. Remarkably, we can train a single pixel-space model at resolutions of up to 1024x1024 pixels, demonstrating strong zero-shot generalization using the CC12M dataset, which contains only 12 million images.

The moderation of content on online platforms is usually non-transparent. On Wikipedia, however, this discussion is carried out publicly and the editors are encouraged to use the content moderation policies as explanations for making moderation decisions. Currently, only a few comments explicitly mention those policies -- 20% of the English ones, but as few as 2% of the German and Turkish comments. To aid in this process of understanding how content is moderated, we construct a novel multilingual dataset of Wikipedia editor discussions along with their reasoning in three languages. The dataset contains the stances of the editors (keep, delete, merge, comment), along with the stated reason, and a content moderation policy, for each edit decision. We demonstrate that stance and corresponding reason (policy) can be predicted jointly with a high degree of accuracy, adding transparency to the decision-making process. We release both our joint prediction models and the multilingual content moderation dataset for further research on automated transparent content moderation.

Learning from Demonstration (LfD) is a framework that allows lay users to easily program robots. However, the efficiency of robot learning and the robot's ability to generalize to task variations hinges upon the quality and quantity of the provided demonstrations. Our objective is to guide human teachers to furnish more effective demonstrations, thus facilitating efficient robot learning. To achieve this, we propose to use a measure of uncertainty, namely task-related information entropy, as a criterion for suggesting informative demonstration examples to human teachers to improve their teaching skills. In a conducted experiment (N=24), an augmented reality (AR)-based guidance system was employed to train novice users to produce additional demonstrations from areas with the highest entropy within the workspace. These novice users were trained for a few trials to teach the robot a generalizable task using a limited number of demonstrations. Subsequently, the users' performance after training was assessed first on the same task (retention) and then on a novel task (transfer) without guidance. The results indicated a substantial improvement in robot learning efficiency from the teacher's demonstrations, with an improvement of up to 198% observed on the novel task. Furthermore, the proposed approach was compared to a state-of-the-art heuristic rule and found to improve robot learning efficiency by 210% compared to the heuristic rule.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. This paper aims to address the challenge by proposing a novel hierarchical reinforcement learning framework for video captioning, where a high-level Manager module learns to design sub-goals and a low-level Worker module recognizes the primitive actions to fulfill the sub-goal. With this compositional framework to reinforce video captioning at different levels, our approach significantly outperforms all the baseline methods on a newly introduced large-scale dataset for fine-grained video captioning. Furthermore, our non-ensemble model has already achieved the state-of-the-art results on the widely-used MSR-VTT dataset.

Recent advance in fluorescence microscopy enables acquisition of 3D image volumes with better quality and deeper penetration into tissue. Segmentation is a required step to characterize and analyze biological structures in the images. 3D segmentation using deep learning has achieved promising results in microscopy images. One issue is that deep learning techniques require a large set of groundtruth data which is impractical to annotate manually for microscopy volumes. This paper describes a 3D nuclei segmentation method using 3D convolutional neural networks. A set of synthetic volumes and the corresponding groundtruth volumes are generated automatically using a generative adversarial network. Segmentation results demonstrate that our proposed method is capable of segmenting nuclei successfully in 3D for various data sets.

北京阿比特科技有限公司