We study the convergence in total variation and $V$-norm of discretization schemes of the underdamped Langevin dynamics. Such algorithms are very popular and commonly used in molecular dynamics and computational statistics to approximatively sample from a target distribution of interest. We show first that, for a very large class of schemes, a minorization condition uniform in the stepsize holds. This class encompasses popular methods such as the Euler-Maruyama scheme and the schemes based on splitting strategies. Second, we provide mild conditions ensuring that the class of schemes that we consider satisfies a geometric Foster--Lyapunov drift condition, again uniform in the stepsize. This allows us to derive geometric convergence bounds, with a convergence rate scaling linearly with the stepsize. This kind of result is of prime interest to obtain estimates on norms of solutions to Poisson equations associated with a given numerical method.
Selecting hyperparameters in deep learning greatly impacts its effectiveness but requires manual effort and expertise. Recent works show that Bayesian model selection with Laplace approximations can allow to optimize such hyperparameters just like standard neural network parameters using gradients and on the training data. However, estimating a single hyperparameter gradient requires a pass through the entire dataset, limiting the scalability of such algorithms. In this work, we overcome this issue by introducing lower bounds to the linearized Laplace approximation of the marginal likelihood. In contrast to previous estimators, these bounds are amenable to stochastic-gradient-based optimization and allow to trade off estimation accuracy against computational complexity. We derive them using the function-space form of the linearized Laplace, which can be estimated using the neural tangent kernel. Experimentally, we show that the estimators can significantly accelerate gradient-based hyperparameter optimization.
In many real-world scenarios, Reinforcement Learning (RL) algorithms are trained on data with dynamics shift, i.e., with different underlying environment dynamics. A majority of current methods address such issue by training context encoders to identify environment parameters. Data with dynamics shift are separated according to their environment parameters to train the corresponding policy. However, these methods can be sample inefficient as data are used \textit{ad hoc}, and policies trained for one dynamics cannot benefit from data collected in all other environments with different dynamics. In this paper, we find that in many environments with similar structures and different dynamics, optimal policies have similar stationary state distributions. We exploit such property and learn the stationary state distribution from data with dynamics shift for efficient data reuse. Such distribution is used to regularize the policy trained in a new environment, leading to the SRPO (\textbf{S}tate \textbf{R}egularized \textbf{P}olicy \textbf{O}ptimization) algorithm. To conduct theoretical analyses, the intuition of similar environment structures is characterized by the notion of homomorphous MDPs. We then demonstrate a lower-bound performance guarantee on policies regularized by the stationary state distribution. In practice, SRPO can be an add-on module to context-based algorithms in both online and offline RL settings. Experimental results show that SRPO can make several context-based algorithms far more data efficient and significantly improve their overall performance.
The Plackett--Luce model is a popular approach for rank data analysis, where a utility vector is employed to determine the probability of each outcome based on Luce's choice axiom. In this paper, we investigate the asymptotic theory of utility vector estimation by maximizing different types of likelihood, such as the full-, marginal-, and quasi-likelihood. We provide a rank-matching interpretation for the estimating equations of these estimators and analyze their asymptotic behavior as the number of items being compared tends to infinity. In particular, we establish the uniform consistency of these estimators under conditions characterized by the topology of the underlying comparison graph sequence and demonstrate that the proposed conditions are sharp for common sampling scenarios such as the nonuniform random hypergraph model and the hypergraph stochastic block model; we also obtain the asymptotic normality of these estimators and discuss the trade-off between statistical efficiency and computational complexity for practical uncertainty quantification. Both results allow for nonuniform and inhomogeneous comparison graphs with varying edge sizes and different asymptotic orders of edge probabilities. We verify our theoretical findings by conducting detailed numerical experiments.
In this paper, we study sampling from a posterior derived from a neural network. We propose a new probabilistic model consisting of adding noise at every pre- and post-activation in the network, arguing that the resulting posterior can be sampled using an efficient Gibbs sampler. The Gibbs sampler attains similar performances as the state-of-the-art Monte Carlo Markov chain methods, such as the Hamiltonian Monte Carlo or the Metropolis adjusted Langevin algorithm, both on real and synthetic data. By framing our analysis in the teacher-student setting, we introduce a thermalization criterion that allows us to detect when an algorithm, when run on data with synthetic labels, fails to sample from the posterior. The criterion is based on the fact that in the teacher-student setting we can initialize an algorithm directly at equilibrium.
Stochastic rounding (SR) offers an alternative to the deterministic IEEE-754 floating-point rounding modes. In some applications such as PDEs, ODEs and neural networks, SR empirically improves the numerical behavior and convergence to accurate solutions while no sound theoretical background has been provided. Recent works by Ipsen, Zhou, Higham, and Mary have computed SR probabilistic error bounds for basic linear algebra kernels. For example, the inner product SR probabilistic bound of the forward error is proportional to $\sqrt$ nu instead of nu for the default rounding mode. To compute the bounds, these works show that the errors accumulated in computation form a martingale. This paper proposes an alternative framework to characterize SR errors based on the computation of the variance. We pinpoint common error patterns in numerical algorithms and propose a lemma that bounds their variance. For each probability and through Bienaym{\'e}-Chebyshev inequality, this bound leads to better probabilistic error bound in several situations. Our method has the advantage of providing a tight probabilistic bound for all algorithms fitting our model. We show how the method can be applied to give SR error bounds for the inner product and Horner polynomial evaluation.
Stochastic approximation with multiple coupled sequences (MSA) has found broad applications in machine learning as it encompasses a rich class of problems including bilevel optimization (BLO), multi-level compositional optimization (MCO), and reinforcement learning (specifically, actor-critic methods). However, designing provably-efficient federated algorithms for MSA has been an elusive question even for the special case of double sequence approximation (DSA). Towards this goal, we develop FedMSA which is the first federated algorithm for MSA, and establish its near-optimal communication complexity. As core novelties, (i) FedMSA enables the provable estimation of hypergradients in BLO and MCO via local client updates, which has been a notable bottleneck in prior theory, and (ii) our convergence guarantees are sensitive to the heterogeneity-level of the problem. We also incorporate momentum and variance reduction techniques to achieve further acceleration leading to near-optimal rates. Finally, we provide experiments that support our theory and demonstrate the empirical benefits of FedMSA. As an example, FedMSA enables order-of-magnitude savings in communication rounds compared to prior federated BLO schemes.
We consider a family of unadjusted generalized HMC samplers, which includes standard position HMC samplers and discretizations of the underdamped Langevin process. A detailed analysis and optimization of the parameters is conducted in the Gaussian case, which shows an improvement from $1/\kappa$ to $1/\sqrt{\kappa}$ for the convergence rate in terms of the condition number $\kappa$ by using partial velocity refreshment, with respect to classical full refreshments. A similar effect is observed empirically for two related algorithms, namely Metropolis-adjusted gHMC and kinetic piecewise-deterministic Markov processes. Then, a stochastic gradient version of the samplers is considered, for which dimension-free convergence rates are established for log-concave smooth targets over a large range of parameters, gathering in a unified framework previous results on position HMC and underdamped Langevin and extending them to HMC with inertia.
We study the Inexact Langevin Dynamics (ILD), Inexact Langevin Algorithm (ILA), and Score-based Generative Modeling (SGM) when utilizing estimated score functions for sampling. Our focus lies in establishing stable biased convergence guarantees in terms of the Kullback-Leibler (KL) divergence. To achieve these guarantees, we impose two key assumptions: 1) the target distribution satisfies the log-Sobolev inequality (LSI), and 2) the score estimator exhibits a bounded Moment Generating Function (MGF) error. Notably, the MGF error assumption we adopt is more lenient compared to the $L^\infty$ error assumption used in existing literature. However, it is stronger than the $L^2$ error assumption utilized in recent works, which often leads to unstable bounds. We explore the question of how to obtain a provably accurate score estimator that satisfies the MGF error assumption. Specifically, we demonstrate that a simple estimator based on kernel density estimation fulfills the MGF error assumption for sub-Gaussian target distribution, at the population level.
Deep equilibrium (DEQ) models replace the multiple-layer stacking of conventional deep networks with a fixed-point iteration of a single-layer transformation. Having been demonstrated to be competitive in a variety of real-world scenarios, the adversarial robustness of general DEQs becomes increasingly crucial for their reliable deployment. Existing works improve the robustness of general DEQ models with the widely-used adversarial training (AT) framework, but they fail to exploit the structural uniquenesses of DEQ models. To this end, we interpret DEQs through the lens of neural dynamics and find that AT under-regulates intermediate states. Besides, the intermediate states typically provide predictions with a high prediction entropy. Informed by the correlation between the entropy of dynamical systems and their stability properties, we propose reducing prediction entropy by progressively updating inputs along the neural dynamics. During AT, we also utilize random intermediate states to compute the loss function. Our methods regulate the neural dynamics of DEQ models in this manner. Extensive experiments demonstrate that our methods substantially increase the robustness of DEQ models and even outperform the strong deep network baselines.
We derive new boundary conditions and implementation procedures for nonlinear initial boundary value problems (IBVPs) with non-zero boundary data that lead to bounded solutions. The new boundary procedure is applied to nonlinear IBVPs on skew-symmetric form, including dissipative terms. The complete procedure has two main ingredients. In the first part (published in [1, 2]), the energy and entropy rate in terms of a surface integral with boundary terms was produced for problems with first derivatives. In this second part we complement it by adding second derivative dissipative terms and bound the boundary terms. We develop a new nonlinear boundary procedure which generalise the characteristic boundary procedure for linear problems. Both strong and weak imposition of the nonlinear boundary conditions with non-zero boundary data are considered, and we prove that the solution is bounded. The boundary procedure is applied to four important IBVPs in computational fluid dynamics: the incompressible Euler and Navier-Stokes, the shallow water and the compressible Euler equations. Finally we show that stable discrete approximations follow by using summation-by-parts operators combined with weak boundary conditions.