In conventional multichannel audio signal enhancement, spatial and spectral filtering are often performed sequentially. In contrast, it has been shown that for neural spatial filtering a joint approach of spectro-spatial filtering is more beneficial. In this contribution, we investigate the influence of the training target on the spatial selectivity of such a time-varying spectro-spatial filter. We extend the recently proposed complex-valued spatial autoencoder (COSPA) for target speaker extraction by leveraging its interpretable structure and purposefully informing the network of the target speaker's position. Consequently, this approach uses a multichannel complex-valued neural network architecture that is capable of processing spatial and spectral information rendering informed COSPA (iCOSPA) an effective neural spatial filtering method. We train iCOSPA for several training targets that enforce different amounts of spatial processing and analyze the network's spatial filtering capacity. We find that the proposed architecture is indeed capable of learning different spatial selectivity patterns to attain the different training targets.
Within the coming decades, artificial general intelligence (AGI) may surpass human capabilities at a wide range of important tasks. We outline a case for expecting that, without substantial effort to prevent it, AGIs could learn to pursue goals which are very undesirable (in other words, misaligned) from a human perspective. We argue that AGIs trained in similar ways as today's most capable models could learn to act deceptively to receive higher reward; learn internally-represented goals which generalize beyond their training distributions; and pursue those goals using power-seeking strategies. We outline how the deployment of misaligned AGIs might irreversibly undermine human control over the world, and briefly review research directions aimed at preventing these problems.
Accurate vulnerability assessment of critical infrastructure systems is cardinal to enhance infrastructure resilience. Unlike traditional approaches, this paper proposes a novel infrastructure vulnerability assessment framework that accounts for: various types of infrastructure interdependencies including physical, logical and geographical from a holistic perspective; lack of/incomplete information on supply-demand flow characteristics of interdependent infrastructure; and, unavailability/inadequate data on infrastructure network topology and/or interdependencies. Specifically, this paper models multi-infrastructure vulnerabilities leveraging simulation-based hybrid approach coupled with time-dependent Bayesian network analysis while considering cascading failures within and across CIS networks, under incomplete information. Existing synthetic data on electricity, water and supply chain networks are used to implement/validate the framework. Infrastructure vulnerabilities are depicted on a geo-map using Voronoi polygons. Our results indicate that infrastructure vulnerability is inversely proportional to the number of redundancies inbuilt in the infrastructure system, indicating that allocating resources to add redundancies in an existing infrastructure system is essential to reduce its risk of failure. It is observed that higher the initial failure rate of the components, higher is the vulnerability of the infrastructure, highlighting the importance of modernizing and upgrading the infrastructure system aiming to reduce the initial failure probabilities. Our results also underline the importance of collaborative working and sharing the necessary information among multiple infrastructure systems, aiming towards minimizing the overall failure risk of interdependent infrastructure systems.
Determining spatial distributions of species and communities are key objectives of ecology and conservation. Joint species distribution models use multi-species detection-nondetection data to estimate species and community distributions. The analysis of such data is complicated by residual correlations between species, imperfect detection, and spatial autocorrelation. While methods exist to accommodate each of these complexities, there are few examples in the literature that address and explore all three complexities simultaneously. Here we developed a spatial factor multi-species occupancy model to explicitly account for species correlations, imperfect detection, and spatial autocorrelation. The proposed model uses a spatial factor dimension reduction approach and Nearest Neighbor Gaussian Processes to ensure computational efficiency for data sets with both a large number of species (e.g., > 100) and spatial locations (e.g., 100,000). We compare the proposed model performance to five candidate models, each addressing a subset of the three complexities. We implemented the proposed and competing models in the spOccupancy software, designed to facilitate application via an accessible, well-documented, and open-source R package. Using simulations, we found ignoring the three complexities when present leads to inferior model predictive performance. Using a case study on 98 bird species across the continental US, the spatial factor multi-species occupancy model had the highest predictive performance among the candidate models. Our proposed framework, together with its implementation in spOccupancy, serves as a user-friendly tool to understand spatial variation in species distributions and biodiversity metrics while addressing common complexities in multi-species detection-nondetection data.
The rise of variational autoencoders for image and video compression has opened the door to many elaborate coding techniques. One example here is the possibility of conditional interframe coding. Here, instead of transmitting the residual between the original frame and the predicted frame (often obtained by motion compensation), the current frame is transmitted under the condition of knowing the prediction signal. In practice, conditional coding can be straightforwardly implemented using a conditional autoencoder, which has also shown good results in recent works. In this paper, we provide an information theoretical analysis of conditional coding for inter frames and show in which cases gains compared to traditional residual coding can be expected. We also show the effect of information bottlenecks which can occur in practical video coders in the prediction signal path due to the network structure, as a consequence of the data-processing theorem or due to quantization. We demonstrate that conditional coding has theoretical benefits over residual coding but that there are cases in which the benefits are quickly canceled by small information bottlenecks of the prediction signal.
The quality of consequences in a decision making problem under (severe) uncertainty must often be compared among different targets (goals, objectives) simultaneously. In addition, the evaluations of a consequence's performance under the various targets often differ in their scale of measurement, classically being either purely ordinal or perfectly cardinal. In this paper, we transfer recent developments from abstract decision theory with incomplete preferential and probabilistic information to this multi-target setting and show how -- by exploiting the (potentially) partial cardinal and partial probabilistic information -- more informative orders for comparing decisions can be given than the Pareto order. We discuss some interesting properties of the proposed orders between decision options and show how they can be concretely computed by linear optimization. We conclude the paper by demonstrating our framework in an artificial (but quite real-world) example in the context of comparing algorithms under different performance measures.
Since the cyberspace consolidated as fifth warfare dimension, the different actors of the defense sector began an arms race toward achieving cyber superiority, on which research, academic and industrial stakeholders contribute from a dual vision, mostly linked to a large and heterogeneous heritage of developments and adoption of civilian cybersecurity capabilities. In this context, augmenting the conscious of the context and warfare environment, risks and impacts of cyber threats on kinetic actuations became a critical rule-changer that military decision-makers are considering. A major challenge on acquiring mission-centric Cyber Situational Awareness (CSA) is the dynamic inference and assessment of the vertical propagations from situations that occurred at the mission supportive Information and Communications Technologies (ICT), up to their relevance at military tactical, operational and strategical views. In order to contribute on acquiring CSA, this paper addresses a major gap in the cyber defence state-of-the-art: the dynamic identification of Key Cyber Terrains (KCT) on a mission-centric context. Accordingly, the proposed KCT identification approach explores the dependency degrees among tasks and assets defined by commanders as part of the assessment criteria. These are correlated with the discoveries on the operational network and the asset vulnerabilities identified thorough the supported mission development. The proposal is presented as a reference model that reveals key aspects for mission-centric KCT analysis and supports its enforcement and further enforcement by including an illustrative application case.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.