Speech Emotion Recognition (SER) is a challenging task. In this paper, we introduce a modality conversion concept aimed at enhancing emotion recognition performance on the MELD dataset. We assess our approach through two experiments: first, a method named Modality-Conversion that employs automatic speech recognition (ASR) systems, followed by a text classifier; second, we assume perfect ASR output and investigate the impact of modality conversion on SER, this method is called Modality-Conversion++. Our findings indicate that the first method yields substantial results, while the second method outperforms state-of-the-art (SOTA) speech-based approaches in terms of SER weighted-F1 (WF1) score on the MELD dataset. This research highlights the potential of modality conversion for tasks that can be conducted in alternative modalities.
Vision and Language Models (VLMs), such as CLIP, have enabled visual recognition of a potentially unlimited set of categories described by text prompts. However, for the best visual recognition performance, these models still require tuning to better fit the data distributions of the downstream tasks, in order to overcome the domain shift from the web-based pre-training data. Recently, it has been shown that it is possible to effectively tune VLMs without any paired data, and in particular to effectively improve VLMs visual recognition performance using text-only training data generated by Large Language Models (LLMs). In this paper, we dive deeper into this exciting text-only VLM training approach and explore ways it can be significantly further improved taking the specifics of the downstream task into account when sampling text data from LLMs. In particular, compared to the SOTA text-only VLM training approach, we demonstrate up to 8.4% performance improvement in (cross) domain-specific adaptation, up to 8.7% improvement in fine-grained recognition, and 3.1% overall average improvement in zero-shot classification compared to strong baselines.
Large language models (large LMs) are increasingly trained on massive codebases and used to generate code. However, LMs lack awareness of security and are found to frequently produce unsafe code. This work studies the security of LMs along two important axes: (i) security hardening, which aims to enhance LMs' reliability in generating secure code, and (ii) adversarial testing, which seeks to evaluate LMs' security at an adversarial standpoint. We address both of these by formulating a new security task called controlled code generation. The task is parametric and takes as input a binary property to guide the LM to generate secure or unsafe code, while preserving the LM's capability of generating functionally correct code. We propose a novel learning-based approach called SVEN to solve this task. SVEN leverages property-specific continuous vectors to guide program generation towards the given property, without modifying the LM's weights. Our training procedure optimizes these continuous vectors by enforcing specialized loss terms on different regions of code, using a high-quality dataset carefully curated by us. Our extensive evaluation shows that SVEN is highly effective in achieving strong security control. For instance, a state-of-the-art CodeGen LM with 2.7B parameters generates secure code for 59.1% of the time. When we employ SVEN to perform security hardening (or adversarial testing) on this LM, the ratio is significantly boosted to 92.3% (or degraded to 36.8%). Importantly, SVEN closely matches the original LMs in functional correctness.
Coarse-Grained Reconfigurable Arrays (CGRAs) hold great promise as power-efficient edge accelerator, offering versatility beyond AI applications. Morpher, an open-source, architecture-adaptive CGRA design framework, is specifically designed to explore the vast design space of CGRAs. The comprehensive ecosystem of Morpher includes a tailored compiler, simulator, accelerator synthesis, and validation framework. This study provides an overview of Morpher, highlighting its capabilities in automatically compiling AI application kernels onto user-defined CGRA architectures and verifying their functionality. Through the Morpher framework, the versatility of CGRAs is harnessed to facilitate efficient compilation and verification of edge AI applications, covering important kernels representative of a wide range of embedded AI workloads. Morpher is available online at //github.com/ecolab-nus/morpher-v2.
Automatic speech recognition (ASR) systems have been shown to be vulnerable to adversarial examples (AEs). Recent success all assumes that users will not notice or disrupt the attack process despite the existence of music/noise-like sounds and spontaneous responses from voice assistants. Nonetheless, in practical user-present scenarios, user awareness may nullify existing attack attempts that launch unexpected sounds or ASR usage. In this paper, we seek to bridge the gap in existing research and extend the attack to user-present scenarios. We propose VRIFLE, an inaudible adversarial perturbation (IAP) attack via ultrasound delivery that can manipulate ASRs as a user speaks. The inherent differences between audible sounds and ultrasounds make IAP delivery face unprecedented challenges such as distortion, noise, and instability. In this regard, we design a novel ultrasonic transformation model to enhance the crafted perturbation to be physically effective and even survive long-distance delivery. We further enable VRIFLE's robustness by adopting a series of augmentation on user and real-world variations during the generation process. In this way, VRIFLE features an effective real-time manipulation of the ASR output from different distances and under any speech of users, with an alter-and-mute strategy that suppresses the impact of user disruption. Our extensive experiments in both digital and physical worlds verify VRIFLE's effectiveness under various configurations, robustness against six kinds of defenses, and universality in a targeted manner. We also show that VRIFLE can be delivered with a portable attack device and even everyday-life loudspeakers.
This paper introduces Stringesthesia, an interactive and improvised performance paradigm. Stringesthesia uses real-time neuroimaging to connect performers and audiences, enabling direct access to the performers mental state and determining audience participation during the performance. Functional near-infrared spectroscopy, or fNIRS, a noninvasive neuroimaging tool, was used to assess metabolic activity of brain areas collectively associated with a metric we call trust. A visualization representing the real-time measurement of the performers level of trust was projected behind the performer and used to dynamically restrict or promote audience participation. Throughout the paper we discuss prior work that heavily influenced our design, conceptual and methodological issues with using fNIRS technology, system architecture, and feedback from the audience and performer.
Hardware Reverse Engineering (HRE) is a technique for analyzing Integrated Circuits (ICs). Experts employ HRE for various security-critical tasks, such as design verification or the detection of intellectual property violations. However, HRE also enables threat actors to subvert the security of an IC. Previous studies have shown that analysts rely heavily on their cognitive abilities to perform HRE as no fully automated solutions exist. Therefore, conducting controlled experimental studies to assess the cognitive processes involved in HRE could open new avenues for hardware protection. However, researchers have faced the methodological challenge that HRE experts are largely unavailable for such empirical research. To address this scarcity, we have developed REVERSIM, a game-based simulation that mimics realistic HRE subprocesses and is specifically designed to require no prior knowledge. To support these claims, we conducted two empirical studies: First, we performed semi-structured interviews with 14 professionals and researchers from the HRE domain, who attested to the comparability of REVERSIM to real-world HRE problems. Second, we conducted a user study involving 89 non-expert participants, demonstrating that participants could engage in the simulation without prior knowledge in HRE or related domains. Finally, we outline several research directions for experiments with REVERSIM, highlighting its potential in advancing HRE research.
In this letter, we introduce ViHOPE, a novel framework for estimating the 6D pose of an in-hand object using visuotactile perception. Our key insight is that the accuracy of the 6D object pose estimate can be improved by explicitly completing the shape of the object. To this end, we introduce a novel visuotactile shape completion module that uses a conditional Generative Adversarial Network to complete the shape of an in-hand object based on volumetric representation. This approach improves over prior works that directly regress visuotactile observations to a 6D pose. By explicitly completing the shape of the in-hand object and jointly optimizing the shape completion and pose estimation tasks, we improve the accuracy of the 6D object pose estimate. We train and test our model on a synthetic dataset and compare it with the state-of-the-art. In the visuotactile shape completion task, we outperform the state-of-the-art by 265% using the Intersection of Union metric and achieve 88% lower Chamfer Distance. In the visuotactile pose estimation task, we present results that suggest our framework reduces position and angular errors by 35% and 64%, respectively. Furthermore, we ablate our framework to confirm the gain on the 6D object pose estimate from explicitly completing the shape. Ultimately, we show that our framework produces models that are robust to sim-to-real transfer on a real-world robot platform.
This paper presents a work-in-progress on a learn-ing system that will provide robotics students with a personalized learning environment. This addresses both the scarcity of skilled robotics instructors, particularly in community colleges and the expensive demand for training equipment. The study of robotics at the college level represents a wide range of interests, experiences, and aims. This project works to provide students the flexibility to adapt their learning to their own goals and prior experience. We are developing a system to enable robotics instruction through a web-based interface that is compatible with less expensive hardware. Therefore, the free distribution of teaching materials will empower educators. This project has the potential to increase the number of robotics courses offered at both two- and four-year schools and universities. The course materials are being designed with small units and a hierarchical dependency tree in mind; students will be able to customize their course of study based on the robotics skills they have already mastered. We present an evaluation of a five module mini-course in robotics. Students indicated that they had a positive experience with the online content. They also scored the experience highly on relatedness, mastery, and autonomy perspectives, demonstrating strong motivation potential for this approach.
Diffusion Probabilistic Models (DPMs) have achieved considerable success in generation tasks. As sampling from DPMs is equivalent to solving diffusion SDE or ODE which is time-consuming, numerous fast sampling methods built upon improved differential equation solvers are proposed. The majority of such techniques consider solving the diffusion ODE due to its superior efficiency. However, stochastic sampling could offer additional advantages in generating diverse and high-quality data. In this work, we engage in a comprehensive analysis of stochastic sampling from two aspects: variance-controlled diffusion SDE and linear multi-step SDE solver. Based on our analysis, we propose SA-Solver, which is an improved efficient stochastic Adams method for solving diffusion SDE to generate data with high quality. Our experiments show that SA-Solver achieves: 1) improved or comparable performance compared with the existing state-of-the-art sampling methods for few-step sampling; 2) SOTA FID scores on substantial benchmark datasets under a suitable number of function evaluations (NFEs).
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.