Local modifications of a computational domain are often performed in order to simplify the meshing process and to reduce computational costs and memory requirements. However, removing geometrical features of a domain often introduces a non-negligible error in the solution of a differential problem in which it is defined. In this work, we extend the results from [1] by studying the case of domains containing an arbitrary number of distinct Neumann features, and by performing an analysis on Poisson's, linear elasticity, and Stokes' equations. We introduce a simple, computationally cheap, reliable, and efficient a posteriori estimator of the geometrical defeaturing error. Moreover, we also introduce a geometric refinement strategy that accounts for the defeaturing error: Starting from a fully defeatured geometry, the algorithm determines at each iteration step which features need to be added to the geometrical model to reduce the defeaturing error. These important features are then added to the (partially) defeatured geometrical model at the next iteration, until the solution attains a prescribed accuracy. A wide range of two- and three-dimensional numerical experiments are finally reported to illustrate this work.
Kinetic approaches are generally accurate in dealing with microscale plasma physics problems but are computationally expensive for large-scale or multiscale systems. One of the long-standing problems in plasma physics is the integration of kinetic physics into fluid models, which is often achieved through sophisticated analytical closure terms. In this paper, we successfully construct a multi-moment fluid model with an implicit fluid closure included in the neural network using machine learning. The multi-moment fluid model is trained with a small fraction of sparsely sampled data from kinetic simulations of Landau damping, using the physics-informed neural network (PINN) and the gradient-enhanced physics-informed neural network (gPINN). The multi-moment fluid model constructed using either PINN or gPINN reproduces the time evolution of the electric field energy, including its damping rate, and the plasma dynamics from the kinetic simulations. In addition, we introduce a variant of the gPINN architecture, namely, gPINN$p$ to capture the Landau damping process. Instead of including the gradients of all the equation residuals, gPINN$p$ only adds the gradient of the pressure equation residual as one additional constraint. Among the three approaches, the gPINN$p$-constructed multi-moment fluid model offers the most accurate results. This work sheds light on the accurate and efficient modeling of large-scale systems, which can be extended to complex multiscale laboratory, space, and astrophysical plasma physics problems.
Identification of nonlinear dynamical systems has been popularized by sparse identification of the nonlinear dynamics (SINDy) via the sequentially thresholded least squares (STLS) algorithm. Many extensions SINDy have emerged in the literature to deal with experimental data which are finite in length and noisy. Recently, the computationally intensive method of ensembling bootstrapped SINDy models (E-SINDy) was proposed for model identification, handling finite, highly noisy data. While the extensions of SINDy are numerous, their sparsity-promoting estimators occasionally provide sparse approximations of the dynamics as opposed to exact recovery. Furthermore, these estimators suffer under multicollinearity, e.g. the irrepresentable condition for the Lasso. In this paper, we demonstrate that the Trimmed Lasso for robust identification of models (TRIM) can provide exact recovery under more severe noise, finite data, and multicollinearity as opposed to E-SINDy. Additionally, the computational cost of TRIM is asymptotically equal to STLS since the sparsity parameter of the TRIM can be solved efficiently by convex solvers. We compare these methodologies on challenging nonlinear systems, specifically the Lorenz 63 system, the Bouc Wen oscillator from the nonlinear dynamics benchmark of No\"el and Schoukens, 2016, and a time delay system describing tool cutting dynamics. This study emphasizes the comparisons between STLS, reweighted $\ell_1$ minimization, and Trimmed Lasso in identification with respect to problems faced by practitioners: the problem of finite and noisy data, the performance of the sparse regression of when the library grows in dimension (multicollinearity), and automatic methods for choice of regularization parameters.
We investigate error of the Euler scheme in the case when the right-hand side function of the underlying ODE satisfies nonstandard assumptions such as local one-sided Lipschitz condition and local H\"older continuity. Moreover, we assume two cases in regards to information availability: exact and noisy with respect to the right-hand side function. Optimality analysis of the Euler scheme is also provided. Finally, we present the results of some numerical experiments.
Emergent chain-of-thought (CoT) reasoning capabilities promise to improve performance and explainability of large language models (LLMs). However, uncertainties remain about how reasoning strategies formulated for previous model generations generalize to new model generations and different datasets. In this small-scale study, we compare different reasoning strategies induced by zero-shot prompting across six recently released LLMs (davinci-002, davinci-003, GPT-3.5-turbo, GPT-4, Flan-T5-xxl and Cohere command-xlarge) on a mixture of six question-answering datasets, including datasets from scientific and medical domains. Our findings demonstrate that while some variations in effectiveness occur, gains from CoT reasoning strategies remain robust across different models and datasets. GPT-4 has the most benefit from current state-of-the-art reasoning strategies and exhibits the best performance by applying a prompt previously discovered through automated discovery.
We consider finite element approximations to the optimal constant for the Hardy inequality with exponent $p=2$ in bounded domains of dimension $n=1$ or $n\geq 3$. For finite element spaces of piecewise linear and continuous functions on a mesh of size $h$, we prove that the approximate Hardy constant, $S_h^n$, converges to the optimal Hardy constant $S^n$ no slower than $O(1/\vert \log h \vert)$. We also show that the convergence is no faster than $O(1/\vert \log h \vert^2)$ if $n=1$ or if $n\geq 3$, the domain is the unit ball, and the finite element discretization exploits the rotational symmetry of the problem. Our estimates are compared to exact values for $S_h^n$ obtained computationally.
The EM algorithm is a popular tool for maximum likelihood estimation but has not been used much for high-dimensional regularization problems in linear mixed-effects models. In this paper, we introduce the EMLMLasso algorithm, which combines the EM algorithm and the popular and efficient R package glmnet for Lasso variable selection of fixed effects in linear mixed-effects models. We compare the performance of our proposed EMLMLasso algorithm with the one implemented in the well-known R package glmmLasso through the analyses of both simulated and real-world applications. The simulations and applications demonstrated good properties, such as consistency, and the effectiveness of the proposed variable selection procedure, for both $p < n$ and $p > n$. Moreover, in all evaluated scenarios, the EMLMLasso algorithm outperformed glmmLasso. The proposed method is quite general and can be easily extended for ridge and elastic net penalties in linear mixed-effects models.
This paper deals with the error analysis of the trapezoidal rule for the computation of Fourier type integrals, based on two double exponential transformations. The theory allows to construct algorithms in which the steplength and the number of nodes can be a priori selected. The analysis is also used to design an automatic integrator that can be employed without any knowledge of the function involved in the problem. Several numerical examples, which confirm the reliability of this strategy, are reported.
Multivariate histograms are difficult to construct due to the curse of dimensionality. Motivated by $k$-d trees in computer science, we show how to construct an efficient data-adaptive partition of Euclidean space that possesses the following two properties: With high confidence the distribution from which the data are generated is close to uniform on each rectangle of the partition; and despite the data-dependent construction we can give guaranteed finite sample simultaneous confidence intervals for the probabilities (and hence for the average densities) of each rectangle in the partition. This partition will automatically adapt to the sizes of the regions where the distribution is close to uniform. The methodology produces confidence intervals whose widths depend only on the probability content of the rectangles and not on the dimensionality of the space, thus avoiding the curse of dimensionality. Moreover, the widths essentially match the optimal widths in the univariate setting. The simultaneous validity of the confidence intervals allows to use this construction, which we call {\sl Beta-trees}, for various data-analytic purposes. We illustrate this by using Beta-trees for visualizing data and for multivariate mode-hunting.
We develop a numerical method for computing with orthogonal polynomials that are orthogonal on multiple, disjoint intervals for which analytical formulae are currently unknown. Our approach exploits the Fokas--Its--Kitaev Riemann--Hilbert representation of the orthogonal polynomials to produce an $\text{O}(N)$ method to compute the first $N$ recurrence coefficients. The method can also be used for pointwise evaluation of the polynomials and their Cauchy transforms throughout the complex plane. The method encodes the singularity behavior of weight functions using weighted Cauchy integrals of Chebyshev polynomials. This greatly improves the efficiency of the method, outperforming other available techniques. We demonstrate the fast convergence of our method and present applications to integrable systems and approximation theory.
Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions for the marginal likelihood. The RJMCMC approach can be employed to samples model and coefficients jointly, but effective design of the transdimensional jumps of RJMCMC can be challenge, making it hard to implement. Alternatively, the marginal likelihood can be derived using data-augmentation scheme e.g. Polya-gamma data argumentation for logistic regression) or through other estimation methods. However, suitable data-augmentation schemes are not available for every generalised linear and survival models, and using estimations such as Laplace approximation or correlated pseudo-marginal to derive marginal likelihood within a locally informed proposal can be computationally expensive in the "large n, large p" settings. In this paper, three main contributions are presented. Firstly, we present an extended Point-wise implementation of Adaptive Random Neighbourhood Informed proposal (PARNI) to efficiently sample models directly from the marginal posterior distribution in both generalised linear models and survival models. Secondly, in the light of the approximate Laplace approximation, we also describe an efficient and accurate estimation method for the marginal likelihood which involves adaptive parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of the PARNI proposal by replacing the Rao-Blackwellised estimates with the combination of a warm-start estimate and an ergodic average. We present numerous numerical results from simulated data and 8 high-dimensional gene fine mapping data-sets to showcase the efficiency of the novel PARNI proposal compared to the baseline add-delete-swap proposal.