We analyze connections between two low rank modeling approaches from the last decade for treating dynamical data. The first one is the coherence problem (or coherent set approach), where groups of states are sought that evolve under the action of a stochastic transition matrix in a way maximally distinguishable from other groups. The second one is a low rank factorization approach for stochastic matrices, called Direct Bayesian Model Reduction (DBMR), which estimates the low rank factors directly from observed data. We show that DBMR results in a low rank model that is a projection of the full model, and exploit this insight to infer bounds on a quantitative measure of coherence within the reduced model. Both approaches can be formulated as optimization problems, and we also prove a bound between their respective objectives. On a broader scope, this work relates the two classical loss functions of nonnegative matrix factorization, namely the Frobenius norm and the generalized Kullback--Leibler divergence, and suggests new links between likelihood-based and projection-based estimation of probabilistic models.
Graph sampling plays an important role in data mining for large networks. Specifically, larger networks often correspond to lower sampling rates. Under the situation, traditional traversal-based samplings for large networks usually have an excessive preference for densely-connected network core nodes. Aim at this issue, this paper proposes a sampling method for unknown networks at low sampling rates, called SLSR, which first adopts a random node sampling to evaluate a degree threshold, utilized to distinguish the core from periphery, and the average degree in unknown networks, and then runs a double-layer sampling strategy on the core and periphery. SLSR is simple that results in a high time efficiency, but experimental evaluation confirms that the proposed method can accurately preserve many critical structures of unknown large networks with low variances and low sampling rates.
By abstracting over well-known properties of De Bruijn's representation with nameless dummies, we design a new theory of syntax with variable binding and capture-avoiding substitution. We propose it as a simpler alternative to Fiore, Plotkin, and Turi's approach, with which we establish a strong formal link. We also show that our theory easily incorporates simple types and equations between terms.
Detecting early warning indicators for abrupt dynamical transitions in complex systems or high-dimensional observation data is essential in many real-world applications, such as brain diseases, natural disasters, financial crises, and engineering reliability. To this end, we develop a novel approach: the directed anisotropic diffusion map that captures the latent evolutionary dynamics in the low-dimensional manifold. Then three effective warning signals (Onsager-Machlup Indicator, Sample Entropy Indicator, and Transition Probability Indicator) are derived through the latent coordinates and the latent stochastic dynamical systems. To validate our framework, we apply this methodology to authentic electroencephalogram (EEG) data. We find that our early warning indicators are capable of detecting the tipping point during state transition. This framework not only bridges the latent dynamics with real-world data but also shows the potential ability for automatic labeling on complex high-dimensional time series.
Convergence of classical parallel iterations is detected by performing a reduction operation at each iteration in order to compute a residual error relative to a potential solution vector. To efficiently run asynchronous iterations, blocking communication requests are avoided, which makes it hard to isolate and handle any global vector. While some termination protocols were proposed for asynchronous iterations, only very few of them are based on global residual computation and guarantee effective convergence. But the most effective and efficient existing solutions feature two reduction operations, which constitutes an important factor of termination delay. In this paper, we present new, non-intrusive, protocols to compute a residual error under asynchronous iterations, requiring only one reduction operation. Various communication models show that some heuristics can even be introduced and formally evaluated. Extensive experiments with up to 5600 processor cores confirm the practical effectiveness and efficiency of our approach.
Time series forecasting plays a crucial role in diverse fields, necessitating the development of robust models that can effectively handle complex temporal patterns. In this article, we present a novel feature selection method embedded in Long Short-Term Memory networks, leveraging a multi-objective evolutionary algorithm. Our approach optimizes the weights and biases of the LSTM in a partitioned manner, with each objective function of the evolutionary algorithm targeting the root mean square error in a specific data partition. The set of non-dominated forecast models identified by the algorithm is then utilized to construct a meta-model through stacking-based ensemble learning. Furthermore, our proposed method provides an avenue for attribute importance determination, as the frequency of selection for each attribute in the set of non-dominated forecasting models reflects their significance. This attribute importance insight adds an interpretable dimension to the forecasting process. Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the generalization ability of conventional LSTMs, effectively reducing overfitting. Comparative analyses against state-of-the-art CancelOut and EAR-FS methods highlight the superior performance of our approach.
A speech spoofing countermeasure (CM) that discriminates between unseen spoofed and bona fide data requires diverse training data. While many datasets use spoofed data generated by speech synthesis systems, it was recently found that data vocoded by neural vocoders were also effective as the spoofed training data. Since many neural vocoders are fast in building and generation, this study used multiple neural vocoders and created more than 9,000 hours of vocoded data on the basis of the VoxCeleb2 corpus. This study investigates how this large-scale vocoded data can improve spoofing countermeasures that use data-hungry self-supervised learning (SSL) models. Experiments demonstrated that the overall CM performance on multiple test sets improved when using features extracted by an SSL model continually trained on the vocoded data. Further improvement was observed when using a new SSL distilled from the two SSLs before and after the continual training. The CM with the distilled SSL outperformed the previous best model on challenging unseen test sets, including the ASVspoof 2019 logical access, WaveFake, and In-the-Wild.
We study operator - or noncommutative - variants of constraint satisfaction problems (CSPs). These higher-dimensional variants are a core topic of investigation in quantum information, where they arise as nonlocal games and entangled multiprover interactive proof systems (MIP*). The idea of higher-dimensional relaxations of CSPs is also important in the classical literature. For example since the celebrated work of Goemans and Williamson on Max-Cut, higher dimensional vector relaxations have been central in the design of approximation algorithms for classical CSPs. We introduce a framework for designing approximation algorithms for noncommutative CSPs. Prior to this work Max-$2$-Lin$(k)$ was the only family of noncommutative CSPs known to be efficiently solvable. This work is the first to establish approximation ratios for a broader class of noncommutative CSPs. In the study of classical CSPs, $k$-ary decision variables are often represented by $k$-th roots of unity, which generalise to the noncommutative setting as order-$k$ unitary operators. In our framework, using representation theory, we develop a way of constructing unitary solutions from SDP relaxations, extending the pioneering work of Tsirelson on XOR games. Then, we introduce a novel rounding scheme to transform these solutions to order-$k$ unitaries. Our main technical innovation here is a theorem guaranteeing that, for any set of unitary operators, there exists a set of order-$k$ unitaries that closely mimics it. As an integral part of the rounding scheme, we prove a random matrix theory result that characterises the distribution of the relative angles between eigenvalues of random unitaries using tools from free probability.
A rank-invariant clustering of variables is introduced that is based on the predictive strength between groups of variables, i.e., two groups are assigned a high similarity if the variables in the first group contain high predictive information about the behaviour of the variables in the other group and/or vice versa. The method presented here is model-free, dependence-based and does not require any distributional assumptions. Various general invariance and continuity properties are investigated, with special attention to those that are beneficial for the agglomerative hierarchical clustering procedure. A fully non-parametric estimator is considered whose excellent performance is demonstrated in several simulation studies and by means of real-data examples.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.