Benchmarking plays a major role in the development and analysis of optimization algorithms. As such, the way in which the used benchmark problems are defined significantly affects the insights that can be gained from any given benchmark study. One way to easily extend the range of available benchmark functions is through affine combinations between pairs of functions. From the perspective of landscape analysis, these function combinations smoothly transition between the two base functions. In this work, we show how these affine function combinations can be used to analyze the behavior of optimization algorithms. In particular, we highlight that by varying the weighting between the combined problems, we can gain insights into the effects of added global structure on the performance of optimization algorithms. By analyzing performance trajectories on more function combinations, we also show that aspects such as the scaling of objective functions and placement of the optimum can greatly impact how these results are interpreted.
The locally modified finite element method, which is introduced in [Frei, Richter: SINUM 52(2014), p. 2315-2334], is a simple fitted finite element method that is able to resolve weak discontinuities in interface problems. The method is based on a fixed structured coarse mesh, which is then refined into sub-elements to resolve an interior interface. In this work, we extend the locally modified finite element method {in two space dimensions} to second order using an isoparametric approach in the interface elements. Thereby we need to take care that the resulting curved edges do not lead to degenerate sub-elements. We prove optimal a priori error estimates in the $L^2$-norm and in a discrete energy norm. Finally, we present numerical examples to substantiate the theoretical findings.
We revisit two well-studied problems, Bounded Degree Vertex Deletion and Defective Coloring, where the input is a graph $G$ and a target degree $\Delta$ and we are asked either to edit or partition the graph so that the maximum degree becomes bounded by $\Delta$. Both are known to be parameterized intractable for treewidth. We revisit the parameterization by treewidth, as well as several related parameters and present a more fine-grained picture of the complexity of both problems. Both admit straightforward DP algorithms with table sizes $(\Delta+2)^\mathrm{tw}$ and $(\chi_\mathrm{d}(\Delta+1))^{\mathrm{tw}}$ respectively, where tw is the input graph's treewidth and $\chi_\mathrm{d}$ the number of available colors. We show that both algorithms are optimal under SETH, even if we replace treewidth by pathwidth. Along the way, we also obtain an algorithm for Defective Coloring with complexity quasi-linear in the table size, thus settling the complexity of both problems for these parameters. We then consider the more restricted parameter tree-depth, and bridge the gap left by known lower bounds, by showing that neither problem can be solved in time $n^{o(\mathrm{td})}$ under ETH. In order to do so, we employ a recursive low tree-depth construction that may be of independent interest. Finally, we show that for both problems, an $\mathrm{vc}^{o(\mathrm{vc})}$ algorithm would violate ETH, thus already known algorithms are optimal. Our proof relies on a new application of the technique of $d$-detecting families introduced by Bonamy et al. Our results, although mostly negative in nature, paint a clear picture regarding the complexity of both problems in the landscape of parameterized complexity, since in all cases we provide essentially matching upper and lower bounds.
As phasor measurement units (PMUs) become more widely used in transmission power systems, a fast state estimation (SE) algorithm that can take advantage of their high sample rates is needed. To accomplish this, we present a method that uses graph neural networks (GNNs) to learn complex bus voltage estimates from PMU voltage and current measurements. We propose an original implementation of GNNs over the power system's factor graph to simplify the integration of various types and quantities of measurements on power system buses and branches. Furthermore, we augment the factor graph to improve the robustness of GNN predictions. This model is highly efficient and scalable, as its computational complexity is linear with respect to the number of nodes in the power system. Training and test examples were generated by randomly sampling sets of power system measurements and annotated with the exact solutions of linear SE with PMUs. The numerical results demonstrate that the GNN model provides an accurate approximation of the SE solutions. Furthermore, errors caused by PMU malfunctions or communication failures that would normally make the SE problem unobservable have a local effect and do not deteriorate the results in the rest of the power system.
Purpose: The importance of robust proton treatment planning to mitigate the impact of uncertainty is well understood. However, its computational cost grows with the number of uncertainty scenarios, prolonging the treatment planning process. We developed a fast and scalable distributed optimization platform that parallelizes this computation over the scenarios. Methods: We modeled the robust proton treatment planning problem as a weighted least-squares problem. To solve it, we employed an optimization technique called the Alternating Direction Method of Multipliers with Barzilai-Borwein step size (ADMM-BB). We reformulated the problem in such a way as to split the main problem into smaller subproblems, one for each proton therapy uncertainty scenario. The subproblems can be solved in parallel, allowing the computational load to be distributed across multiple processors (e.g., CPU threads/cores). We evaluated ADMM-BB on four head-and-neck proton therapy patients, each with 13 scenarios accounting for 3 mm setup and 3:5% range uncertainties. We then compared the performance of ADMM-BB with projected gradient descent (PGD) applied to the same problem. Results: For each patient, ADMM-BB generated a robust proton treatment plan that satisfied all clinical criteria with comparable or better dosimetric quality than the plan generated by PGD. However, ADMM-BB's total runtime averaged about 6 to 7 times faster. This speedup increased with the number of scenarios. Conclusion: ADMM-BB is a powerful distributed optimization method that leverages parallel processing platforms, such as multi-core CPUs, GPUs, and cloud servers, to accelerate the computationally intensive work of robust proton treatment planning. This results in 1) a shorter treatment planning process and 2) the ability to consider more uncertainty scenarios, which improves plan quality.
Large multimodal datasets have been instrumental in recent breakthroughs such as CLIP, Stable Diffusion, and GPT-4. At the same time, datasets rarely receive the same research attention as model architectures or training algorithms. To address this shortcoming in the machine learning ecosystem, we introduce DataComp, a benchmark where the training code is fixed and researchers innovate by proposing new training sets. We provide a testbed for dataset experiments centered around a new candidate pool of 12.8B image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing on 38 downstream test sets. Our benchmark consists of multiple scales, with four candidate pool sizes and associated compute budgets ranging from 12.8M to 12.8B samples seen during training. This multi-scale design facilitates the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow is a promising way of improving multimodal datasets. We introduce DataComp-1B, a dataset created by applying a simple filtering algorithm to the 12.8B candidate pool. The resulting 1.4B subset enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet. Our new ViT-L/14 model outperforms a larger ViT-g/14 trained on LAION-2B by 0.7 percentage points while requiring 9x less training compute. We also outperform OpenAI's CLIP ViT-L/14 by 3.7 percentage points, which is trained with the same compute budget as our model. These gains highlight the potential for improving model performance by carefully curating training sets. We view DataComp-1B as only the first step and hope that DataComp paves the way toward the next generation of multimodal datasets.
Image quality assessment (IQA) is very important for both end-users and service providers since a high-quality image can significantly improve the user's quality of experience (QoE) and also benefit lots of computer vision algorithms. Most existing blind image quality assessment (BIQA) models were developed for synthetically distorted images, however, they perform poorly on in-the-wild images, which are widely existed in various practical applications. In this paper, we propose a novel BIQA model for in-the-wild images by addressing two critical problems in this field: how to learn better quality-aware feature representation, and how to solve the problem of insufficient training samples in terms of their content and distortion diversity. Considering that perceptual visual quality is affected by both low-level visual features (e.g. distortions) and high-level semantic information (e.g. content), we first propose a staircase structure to hierarchically integrate the features from intermediate layers into the final feature representation, which enables the model to make full use of visual information from low-level to high-level. Then an iterative mixed database training (IMDT) strategy is proposed to train the BIQA model on multiple databases simultaneously, so the model can benefit from the increase in both training samples and image content and distortion diversity and can learn a more general feature representation. Experimental results show that the proposed model outperforms other state-of-the-art BIQA models on six in-the-wild IQA databases by a large margin. Moreover, the proposed model shows an excellent performance in the cross-database evaluation experiments, which further demonstrates that the learned feature representation is robust to images with diverse distortions and content. The code is available at //github.com/sunwei925/StairIQA.
Focusing on stochastic programming (SP) with covariate information, this paper proposes an empirical risk minimization (ERM) method embedded within a nonconvex piecewise affine decision rule (PADR), which aims to learn the direct mapping from features to optimal decisions. We establish the nonasymptotic consistency result of our PADR-based ERM model for unconstrained problems and asymptotic consistency result for constrained ones. To solve the nonconvex and nondifferentiable ERM problem, we develop an enhanced stochastic majorization-minimization algorithm and establish the asymptotic convergence to (composite strong) directional stationarity along with complexity analysis. We show that the proposed PADR-based ERM method applies to a broad class of nonconvex SP problems with theoretical consistency guarantees and computational tractability. Our numerical study demonstrates the superior performance of PADR-based ERM methods compared to state-of-the-art approaches under various settings, with significantly lower costs, less computation time, and robustness to feature dimensions and nonlinearity of the underlying dependency.
In this paper we face the problem of representation of functional data with the tools of algebraic topology. We represent functions by means of merge trees and this representation is compared with that offered by persistence diagrams. We show that these two structures, although not equivalent, are both invariant under homeomorphic re-parametrizations of the functions they represent, thus allowing for a statistical analysis which is indifferent to functional misalignment. We employ a novel metric for merge trees and we prove some theoretical results related to its specific implementation when merge trees represent functions. To showcase the good properties of our topological approach to functional data analysis, we test it on the Aneurisk65 dataset replicating, from our different perspective, the supervised classification analysis which contributed to make this dataset a benchmark for methods dealing with misaligned functional data.
The domain of an optimization problem is seen as one of its most important characteristics. In particular, the distinction between continuous and discrete optimization is rather impactful. Based on this, the optimizing algorithm, analyzing method, and more are specified. However, in practice, no problem is ever truly continuous. Whether this is caused by computing limits or more tangible properties of the problem, most variables have a finite resolution. In this work, we use the notion of the resolution of continuous variables to discretize problems from the continuous domain. We explore how the resolution impacts the performance of continuous optimization algorithms. Through a mapping to integer space, we are able to compare these continuous optimizers to discrete algorithms on the exact same problems. We show that the standard $(\mu_W, \lambda)$-CMA-ES fails when discretization is added to the problem.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.