亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The domain of an optimization problem is seen as one of its most important characteristics. In particular, the distinction between continuous and discrete optimization is rather impactful. Based on this, the optimizing algorithm, analyzing method, and more are specified. However, in practice, no problem is ever truly continuous. Whether this is caused by computing limits or more tangible properties of the problem, most variables have a finite resolution. In this work, we use the notion of the resolution of continuous variables to discretize problems from the continuous domain. We explore how the resolution impacts the performance of continuous optimization algorithms. Through a mapping to integer space, we are able to compare these continuous optimizers to discrete algorithms on the exact same problems. We show that the standard $(\mu_W, \lambda)$-CMA-ES fails when discretization is added to the problem.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

In spite of the large literature on reinforcement learning (RL) algorithms for partially observable Markov decision processes (POMDPs), a complete theoretical understanding is still lacking. In a partially observable setting, the history of data available to the agent increases over time so most practical algorithms either truncate the history to a finite window or compress it using a recurrent neural network leading to an agent state that is non-Markovian. In this paper, it is shown that in spite of the lack of the Markov property, recurrent Q-learning (RQL) converges in the tabular setting. Moreover, it is shown that the quality of the converged limit depends on the quality of the representation which is quantified in terms of what is known as an approximate information state (AIS). Based on this characterization of the approximation error, a variant of RQL with AIS losses is presented. This variant performs better than a strong baseline for RQL that does not use AIS losses. It is demonstrated that there is a strong correlation between the performance of RQL over time and the loss associated with the AIS representation.

The fair allocation of mixed goods, consisting of both divisible and indivisible goods, among agents with heterogeneous preferences, has been a prominent topic of study in economics and computer science. In this paper, we investigate the nature of fair allocations when agents have binary valuations. We define an allocation as fair if its utility vector minimizes a symmetric strictly convex function, which includes conventional fairness criteria such as maximum egalitarian social welfare and maximum Nash social welfare. While a good structure is known for the continuous case (where only divisible goods exist) or the discrete case (where only indivisible goods exist), deriving such a structure in the hybrid case remains challenging. Our contributions are twofold. First, we demonstrate that the hybrid case does not inherit some of the nice properties of continuous or discrete cases, while it does inherit the proximity theorem. Second, we analyze the computational complexity of finding a fair allocation of mixed goods based on the proximity theorem. In particular, we provide a polynomial-time algorithm for the case when all divisible goods are identical and homogeneous, and demonstrate that the problem is NP-hard in general. Our results also contribute to a deeper understanding of the hybrid convex analysis.

A drawback of the classic approach for complexity analysis of distributed graph problems is that it mostly informs about the complexity of notorious classes of ``worst case'' graphs. Algorithms that are used to prove a tight (existential) bound are essentially optimized to perform well on such worst case graphs. However, such graphs are often either unlikely or actively avoided in practice, where benign graph instances usually admit much faster solutions. To circumnavigate these drawbacks, the concept of universal complexity analysis in the distributed setting was suggested by [Kutten and Peleg, PODC'95] and actively pursued by [Haeupler et al., STOC'21]. Here, the aim is to gauge the complexity of a distributed graph problem depending on the given graph instance. The challenge is to identify and understand the graph property that allows to accurately quantify the complexity of a distributed problem on a given graph. In the present work, we consider distributed shortest paths problems in the HYBRID model of distributed computing, where nodes have simultaneous access to two different modes of communication: one is restricted by locality and the other is restricted by congestion. We identify the graph parameter of neighborhood quality and show that it accurately describes a universal bound for the complexity of certain class of shortest paths problems in the HYBRID model.

This paper investigates the problem of simultaneously predicting multiple binary responses by utilizing a shared set of covariates. Our approach incorporates machine learning techniques for binary classification, without making assumptions about the underlying observations. Instead, our focus lies on a group of predictors, aiming to identify the one that minimizes prediction error. Unlike previous studies that primarily address estimation error, we directly analyze the prediction error of our method using PAC-Bayesian bounds techniques. In this paper, we introduce a pseudo-Bayesian approach capable of handling incomplete response data. Our strategy is efficiently implemented using the Langevin Monte Carlo method. Through simulation studies and a practical application using real data, we demonstrate the effectiveness of our proposed method, producing comparable or sometimes superior results compared to the current state-of-the-art method.

Network data, commonly used throughout the physical, social, and biological sciences, consists of nodes (individuals) and the edges (interactions) between them. One way to represent network data's complex, high-dimensional structure is to embed the graph into a low-dimensional geometric space. The curvature of this space, in particular, provides insights about the structure in the graph, such as the propensity to form triangles or present tree-like structures. We derive an estimating function for curvature based on triangle side lengths and the length of the midpoint of a side to the opposing corner. We construct an estimator where the only input is a distance matrix and also establish asymptotic normality. We next introduce a novel latent distance matrix estimator for networks and an efficient algorithm to compute the estimate via solving iterative quadratic programs. We apply this method to the Los Alamos National Laboratory Unified Network and Host dataset and show how curvature estimates can be used to detect a red-team attack faster than naive methods, as well as discover non-constant latent curvature in co-authorship networks in physics. The code for this paper is available at //github.com/SteveJWR/netcurve, and the methods are implemented in the R package //github.com/SteveJWR/lolaR.

We show that the two-stage minimum description length (MDL) criterion widely used to estimate linear change-point (CP) models corresponds to the marginal likelihood of a Bayesian model with a specific class of prior distributions. This allows results from the frequentist and Bayesian paradigms to be bridged together. Thanks to this link, one can rely on the consistency of the number and locations of the estimated CPs and the computational efficiency of frequentist methods, and obtain a probability of observing a CP at a given time, compute model posterior probabilities, and select or combine CP methods via Bayesian posteriors. Furthermore, we adapt several CP methods to take advantage of the MDL probabilistic representation. Based on simulated data, we show that the adapted CP methods can improve structural break detection compared to state-of-the-art approaches. Finally, we empirically illustrate the usefulness of combining CP detection methods when dealing with long time series and forecasting.

Species-sampling problems (SSPs) refer to a vast class of statistical problems calling for the estimation of (discrete) functionals of the unknown species composition of an unobservable population. A common feature of SSPs is their invariance with respect to species labelling, which is at the core of the Bayesian nonparametric (BNP) approach to SSPs under the popular Pitman-Yor process (PYP) prior. In this paper, we develop a BNP approach to SSPs that are not "invariant" to species labelling, in the sense that an ordering or ranking is assigned to species' labels. Inspired by the population genetics literature on age-ordered alleles' compositions, we study the following SSP with ordering: given an observable sample from an unknown population of individuals belonging to species (alleles), with species' labels being ordered according to weights (ages), estimate the frequencies of the first $r$ order species' labels in an enlarged sample obtained by including additional unobservable samples. By relying on an ordered PYP prior, we obtain an explicit posterior distribution of the first $r$ order frequencies, with estimates being of easy implementation and computationally efficient. We apply our approach to the analysis of genetic variation, showing its effectiveness in estimating the frequency of the oldest allele, and then we discuss other potential applications.

Multiple systems estimation is a standard approach to quantifying hidden populations where data sources are based on lists of known cases. A typical modelling approach is to fit a Poisson loglinear model to the numbers of cases observed in each possible combination of the lists. It is necessary to decide which interaction parameters to include in the model, and information criterion approaches are often used for model selection. Difficulties in the context of multiple systems estimation may arise due to sparse or nil counts based on the intersection of lists, and care must be taken when information criterion approaches are used for model selection due to issues relating to the existence of estimates and identifiability of the model. Confidence intervals are often reported conditional on the model selected, providing an over-optimistic impression of the accuracy of the estimation. A bootstrap approach is a natural way to account for the model selection procedure. However, because the model selection step has to be carried out for every bootstrap replication, there may be a high or even prohibitive computational burden. We explore the merit of modifying the model selection procedure in the bootstrap to look only among a subset of models, chosen on the basis of their information criterion score on the original data. This provides large computational gains with little apparent effect on inference. Another model selection approach considered and investigated is a downhill search approach among models, possibly with multiple starting points.

A parametric class of trust-region algorithms for unconstrained nonconvex optimization is considered where the value of the objective function is never computed. The class contains a deterministic version of the first-order Adagrad method typically used for minimization of noisy function, but also allows the use of (possibly approximate) second-order information when available. The rate of convergence of methods in the class is analyzed and is shown to be identical to that known for first-order optimization methods using both function and gradients values, recovering existing results for purely-first order variants and improving the explicit dependence on problem dimension. This rate is shown to be essentially sharp. A new class of methods is also presented, for which a slightly worse and essentially sharp complexity result holds. Limited numerical experiments show that the new methods' performance may be comparable to that of standard steepest descent, despite using significantly less information, and that this performance is relatively insensitive to noise.

Humans performing tasks that involve taking a series of multiple dependent actions over time often learn from experience by reflecting on specific cases and points in time, where different actions could have led to significantly better outcomes. While recent machine learning methods to retrospectively analyze sequential decision making processes promise to aid decision makers in identifying such cases, they have focused on environments with finitely many discrete states. However, in many practical applications, the state of the environment is inherently continuous in nature. In this paper, we aim to fill this gap. We start by formally characterizing a sequence of discrete actions and continuous states using finite horizon Markov decision processes and a broad class of bijective structural causal models. Building upon this characterization, we formalize the problem of finding counterfactually optimal action sequences and show that, in general, we cannot expect to solve it in polynomial time. Then, we develop a search method based on the $A^*$ algorithm that, under a natural form of Lipschitz continuity of the environment's dynamics, is guaranteed to return the optimal solution to the problem. Experiments on real clinical data show that our method is very efficient in practice, and it has the potential to offer interesting insights for sequential decision making tasks.

北京阿比特科技有限公司