亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The low cost and rapid provisioning capabilities have made the cloud a desirable platform to launch complex scientific applications. However, resource utilization optimization is a significant challenge for cloud service providers, since the earlier focus is provided on optimizing resources for the applications that run on the cloud, with a low emphasis being provided on optimizing resource utilization of the cloud computing internal processes. Code refactoring has been associated with improving the maintenance and understanding of software code. However, analyzing the impact of the refactoring source code of the cloud and studying its impact on cloud resource usage require further analysis. In this paper, we propose a framework called Unified Regression Modelling (URegM) which predicts the impact of code smell refactoring on cloud resource usage. We test our experiments in a real-life cloud environment using a complex scientific application as a workload. Results show that URegM is capable of accurately predicting resource consumption due to code smell refactoring. This will permit cloud service providers with advanced knowledge about the impact of refactoring code smells on resource consumption, thus allowing them to plan their resource provisioning and code refactoring more effectively.

相關內容

代(dai)(dai)(dai)碼(Code)是專(zhuan)知網的(de)一個(ge)重要知識(shi)資料文檔板塊,旨(zhi)在整理(li)收(shou)錄論文源代(dai)(dai)(dai)碼、復現代(dai)(dai)(dai)碼,經典工程代(dai)(dai)(dai)碼等,便于用戶查(cha)閱下載使(shi)用。

State-of-the-art visual localization methods mostly rely on complex procedures to match local descriptors and 3D point clouds. However, these procedures can incur significant cost in terms of inference, storage, and updates over time. In this study, we propose a direct learning-based approach that utilizes a simple network named D2S to represent local descriptors and their scene coordinates. Our method is characterized by its simplicity and cost-effectiveness. It solely leverages a single RGB image for localization during the testing phase and only requires a lightweight model to encode a complex sparse scene. The proposed D2S employs a combination of a simple loss function and graph attention to selectively focus on robust descriptors while disregarding areas such as clouds, trees, and several dynamic objects. This selective attention enables D2S to effectively perform a binary-semantic classification for sparse descriptors. Additionally, we propose a new outdoor dataset to evaluate the capabilities of visual localization methods in terms of scene generalization and self-updating from unlabeled observations. Our approach outperforms the state-of-the-art CNN-based methods in scene coordinate regression in indoor and outdoor environments. It demonstrates the ability to generalize beyond training data, including scenarios involving transitions from day to night and adapting to domain shifts, even in the absence of the labeled data sources. The source code, trained models, dataset, and demo videos are available at the following link: //thpjp.github.io/d2s

We present a novel clustering algorithm, visClust, that is based on lower dimensional data representations and visual interpretation. Thereto, we design a transformation that allows the data to be represented by a binary integer array enabling the use of image processing methods to select a partition. Qualitative and quantitative analyses measured in accuracy and an adjusted Rand-Index show that the algorithm performs well while requiring low runtime and RAM. We compare the results to 6 state-of-the-art algorithms with available code, confirming the quality of visClust by superior performance in most experiments. Moreover, the algorithm asks for just one obligatory input parameter while allowing optimization via optional parameters. The code is made available on GitHub and straightforward to use.

Test-negative designs are widely used for post-market evaluation of vaccine effectiveness. Different from classical test-negative designs where only healthcare-seekers with symptoms are included, recent test-negative designs have involved individuals with various reasons for testing, especially in an outbreak setting. While including these data can increase sample size and hence improve precision, concerns have been raised about whether they will introduce bias into the current framework of test-negative designs, thereby demanding a formal statistical examination of this modified design. In this article, using statistical derivations, causal graphs, and numerical simulations, we show that the standard odds ratio estimator may be biased if various reasons for testing are not accounted for. To eliminate this bias, we identify three categories of reasons for testing, including symptoms, disease-unrelated reasons, and case contact tracing, and characterize associated statistical properties and estimands. Based on our characterization, we propose stratified estimators that can incorporate multiple reasons for testing to achieve consistent estimation and improve precision by maximizing the use of data. The performance of our proposed method is demonstrated through simulation studies.

The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.

While many phenomena in physics and engineering are formally high-dimensional, their long-time dynamics often live on a lower-dimensional manifold. The present work introduces an autoencoder framework that combines implicit regularization with internal linear layers and $L_2$ regularization (weight decay) to automatically estimate the underlying dimensionality of a data set, produce an orthogonal manifold coordinate system, and provide the mapping functions between the ambient space and manifold space, allowing for out-of-sample projections. We validate our framework's ability to estimate the manifold dimension for a series of datasets from dynamical systems of varying complexities and compare to other state-of-the-art estimators. We analyze the training dynamics of the network to glean insight into the mechanism of low-rank learning and find that collectively each of the implicit regularizing layers compound the low-rank representation and even self-correct during training. Analysis of gradient descent dynamics for this architecture in the linear case reveals the role of the internal linear layers in leading to faster decay of a "collective weight variable" incorporating all layers, and the role of weight decay in breaking degeneracies and thus driving convergence along directions in which no decay would occur in its absence. We show that this framework can be naturally extended for applications of state-space modeling and forecasting by generating a data-driven dynamic model of a spatiotemporally chaotic partial differential equation using only the manifold coordinates. Finally, we demonstrate that our framework is robust to hyperparameter choices.

To understand high precision observations of exoplanets and brown dwarfs, we need detailed and complex general circulation models (GCMs) that incorporate hydrodynamics, chemistry, and radiation. For this study, we specifically examined the coupling between chemistry and radiation in GCMs and compared different methods for the mixing of opacities of different chemical species in the correlated-k assumption, when equilibrium chemistry cannot be assumed. We propose a fast machine learning method based on DeepSets (DS), which effectively combines individual correlated-k opacities (k-tables). We evaluated the DS method alongside other published methods such as adaptive equivalent extinction (AEE) and random overlap with rebinning and resorting (RORR). We integrated these mixing methods into our GCM (expeRT/MITgcm) and assessed their accuracy and performance for the example of the hot Jupiter HD~209458 b. Our findings indicate that the DS method is both accurate and efficient for GCM usage, whereas RORR is too slow. Additionally, we observed that the accuracy of AEE depends on its specific implementation and may introduce numerical issues in achieving radiative transfer solution convergence. We then applied the DS mixing method in a simplified chemical disequilibrium situation, where we modeled the rainout of TiO and VO, and confirmed that the rainout of TiO and VO would hinder the formation of a stratosphere. To further expedite the development of consistent disequilibrium chemistry calculations in GCMs, we provide documentation and code for coupling the DS mixing method with correlated-k radiative transfer solvers. The DS method has been extensively tested to be accurate enough for GCMs; however, other methods might be needed for accelerating atmospheric retrievals.

The error exponent of fixed-length lossy source coding was established by Marton. Ahlswede showed that this exponent can be discontinuous at a rate $R$, depending on the source distribution $P$ and the distortion measure $d(x,y)$. The reason for the discontinuity in the error exponent is that there exists a distortion measure $d(x,y)$ and a distortion level $\Delta$ such that the rate-distortion function $R(\Delta|P)$ is neither concave nor quasi-concave with respect to $P$. Arimoto's algorithm for computing the error exponent in lossy source coding is based on Blahut's parametric representation of the error exponent. However, Blahut's parametric representation is a lower convex envelope of Marton's exponent, and the two do not generally agree. A major contribution of this paper is to provide a parametric representation that perfectly matches the inverse function of Marton's exponent, thereby preventing the problems arising from the above-mentioned non-concavity of $R(\Delta|P)$. For fixed parameters, an optimal distribution can be obtained using Arimoto's algorithm. By performing a nonconvex optimization over the parameters, the inverse function of Marton's exponent is obtained.

The increase in performance and power of computing systems requires the wider use of program optimizations. The goal of performing optimizations is not only to reduce program runtime, but also to reduce other computer resources including power consumption. The goal of the study was to evaluate the impact of different optimization levels and various optimization strategies on power consumption. In a series of experiments, it was established that the average power consumption tends to peak for the programs with optimized source code. The articles also describes the impact of changing computer architecture on power consumption graphs. The relationships between the average and median values of power consumption by example programs are considered. The possibility of creating program energy consumption profile for a parallel program is shown.

This research investigates the numerical approximation of the two-dimensional convection-dominated singularly perturbed problem on square, circular, and elliptic domains. Singularly perturbed boundary value problems present a significant challenge due to the presence of sharp boundary layers in their solutions. Additionally, the considered domain exhibits characteristic points, giving rise to a degenerate boundary layer problem. The stiffness of the problem is attributed to the sharp singular layers, which can result in substantial computational errors if not appropriately addressed. Traditional numerical methods typically require extensive mesh refinements near the boundary to achieve accurate solutions, which can be computationally expensive. To address the challenges posed by singularly perturbed problems, we employ physics-informed neural networks (PINNs). However, PINNs may struggle with rapidly varying singularly perturbed solutions over a small domain region, leading to inadequate resolution and potentially inaccurate or unstable results. To overcome this limitation, we introduce a semi-analytic method that augments PINNs with singular layers or corrector functions. Through our numerical experiments, we demonstrate significant improvements in both accuracy and stability, thus demonstrating the effectiveness of our proposed approach.

A growing number of scholars and data scientists are conducting randomized experiments to analyze causal relationships in network settings where units influence one another. A dominant methodology for analyzing these network experiments has been design-based, leveraging randomization of treatment assignment as the basis for inference. In this paper, we generalize this design-based approach so that it can be applied to more complex experiments with a variety of causal estimands with different target populations. An important special case of such generalized network experiments is a bipartite network experiment, in which the treatment assignment is randomized among one set of units and the outcome is measured for a separate set of units. We propose a broad class of causal estimands based on stochastic intervention for generalized network experiments. Using a design-based approach, we show how to estimate the proposed causal quantities without bias, and develop conservative variance estimators. We apply our methodology to a randomized experiment in education where a group of selected students in middle schools are eligible for the anti-conflict promotion program, and the program participation is randomized within this group. In particular, our analysis estimates the causal effects of treating each student or his/her close friends, for different target populations in the network. We find that while the treatment improves the overall awareness against conflict among students, it does not significantly reduce the total number of conflicts.

北京阿比特科技有限公司