We present a multidimensional deep learning implementation of a stochastic branching algorithm for the numerical solution of fully nonlinear PDEs. This approach is designed to tackle functional nonlinearities involving gradient terms of any orders, by combining the use of neural networks with a Monte Carlo branching algorithm. In comparison with other deep learning PDE solvers, it also allows us to check the consistency of the learned neural network function. Numerical experiments presented show that this algorithm can outperform deep learning approaches based on backward stochastic differential equations or the Galerkin method, and provide solution estimates that are not obtained by those methods in fully nonlinear examples.
We construct a monotone continuous $Q^1$ finite element method on the uniform mesh for the anisotropic diffusion problem with a diagonally dominant diffusion coefficient matrix. The monotonicity implies the discrete maximum principle. Convergence of the new scheme is rigorously proven. On quadrilateral meshes, the matrix coefficient conditions translate into specific a mesh constraint.
We develop a novel discontinuous Galerkin method for solving the rotating thermal shallow water equations (TRSW) on a curvilinear mesh. Our method is provably entropy stable, conserves mass, buoyancy and vorticity, while also semi-discretely conserving energy. This is achieved by using novel numerical fluxes and splitting the pressure and convection operators. We implement our method on a cubed sphere mesh and numerically verify our theoretical results. Our experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilization.
For the pure biharmonic equation and a biharmonic singular perturbation problem, a residual-based error estimator is introduced which applies to many existing nonconforming finite elements. The error estimator involves the local best-approximation error of the finite element function by piecewise polynomial functions of the degree determining the expected approximation order, which need not coincide with the maximal polynomial degree of the element, for example if bubble functions are used. The error estimator is shown to be reliable and locally efficient up to this polynomial best-approximation error and oscillations of the right-hand side.
We consider various iterative algorithms for solving the linear equation $ax=b$ using a quantum computer operating on the principle of quantum annealing. Assuming that the computer's output is described by the Boltzmann distribution, it is shown under which conditions the equation-solving algorithms converge, and an estimate of their convergence rate is provided. The application of this approach to algorithms using both an infinite number of qubits and a small number of qubits is discussed.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.
We propose a simple method for simulating a general class of non-unitary dynamics as a linear combination of Hamiltonian simulation (LCHS) problems. LCHS does not rely on converting the problem into a dilated linear system problem, or on the spectral mapping theorem. The latter is the mathematical foundation of many quantum algorithms for solving a wide variety of tasks involving non-unitary processes, such as the quantum singular value transformation (QSVT). The LCHS method can achieve optimal cost in terms of state preparation. We also demonstrate an application for open quantum dynamics simulation using the complex absorbing potential method with near-optimal dependence on all parameters.
We develop a provably efficient importance sampling scheme that estimates exit probabilities of solutions to small-noise stochastic reaction-diffusion equations from scaled neighborhoods of a stable equilibrium. The moderate deviation scaling allows for a local approximation of the nonlinear dynamics by their linearized version. In addition, we identify a finite-dimensional subspace where exits take place with high probability. Using stochastic control and variational methods we show that our scheme performs well both in the zero noise limit and pre-asymptotically. Simulation studies for stochastically perturbed bistable dynamics illustrate the theoretical results.
In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-penalization of interior jump terms. The bilinear form with interior over-penalization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-penalization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.
Symmetry is a cornerstone of much of mathematics, and many probability distributions possess symmetries characterized by their invariance to a collection of group actions. Thus, many mathematical and statistical methods rely on such symmetry holding and ostensibly fail if symmetry is broken. This work considers under what conditions a sequence of probability measures asymptotically gains such symmetry or invariance to a collection of group actions. Considering the many symmetries of the Gaussian distribution, this work effectively proposes a non-parametric type of central limit theorem. That is, a Lipschitz function of a high dimensional random vector will be asymptotically invariant to the actions of certain compact topological groups. Applications of this include a partial law of the iterated logarithm for uniformly random points in an $\ell_p^n$-ball and an asymptotic equivalence between classical parametric statistical tests and their randomization counterparts even when invariance assumptions are violated.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.