Disentangling attributes of various sensory signals is central to human-like perception and reasoning and a critical task for higher-order cognitive and neuro-symbolic AI systems. An elegant approach to represent this intricate factorization is via high-dimensional holographic vectors drawing on brain-inspired vector symbolic architectures. However, holographic factorization involves iterative computation with high-dimensional matrix-vector multiplications and suffers from non-convergence problems. In this paper, we present H3DFact, a heterogeneous 3D integrated in-memory compute engine capable of efficiently factorizing high-dimensional holographic representations. H3DFact exploits the computation-in-superposition capability of holographic vectors and the intrinsic stochasticity associated with memristive-based 3D compute-in-memory. Evaluated on large-scale factorization and perceptual problems, H3DFact demonstrates superior capability in factorization accuracy and operational capacity by up to five orders of magnitude, with 5.5x compute density, 1.2x energy efficiency improvements, and 5.9x less silicon footprint compared to iso-capacity 2D designs.
The infrequency and heterogeneity of clinical presentations in rare diseases often lead to underdiagnosis and their exclusion from structured datasets. This necessitates the utilization of unstructured text data for comprehensive analysis. However, the manual identification from clinical reports is an arduous and intrinsically subjective task. This study proposes a novel hybrid approach that synergistically combines a traditional dictionary-based natural language processing (NLP) tool with the powerful capabilities of large language models (LLMs) to enhance the identification of rare diseases from unstructured clinical notes. We comprehensively evaluate various prompting strategies on six large language models (LLMs) of varying sizes and domains (general and medical). This evaluation encompasses zero-shot, few-shot, and retrieval-augmented generation (RAG) techniques to enhance the LLMs' ability to reason about and understand contextual information in patient reports. The results demonstrate effectiveness in rare disease identification, highlighting the potential for identifying underdiagnosed patients from clinical notes.
As quantum computing is rising in popularity, the amount of quantum programs and the number of developers writing them are increasing rapidly. Unfortunately, writing correct quantum programs is challenging due to various subtle rules developers need to be aware of. Empirical studies show that 40-82% of all bugs in quantum software are specific to the quantum domain. Yet, existing static bug detection frameworks are mostly unaware of quantum-specific concepts, such as circuits, gates, and qubits, and hence miss many bugs. This paper presents LintQ, a comprehensive static analysis framework for detecting bugs in quantum programs. Our approach is enabled by a set of abstractions designed to reason about common concepts in quantum computing without referring to the details of the underlying quantum computing platform. Built on top of these abstractions, LintQ offers an extensible set of ten analyses that detect likely bugs, such as operating on corrupted quantum states, redundant measurements, and incorrect compositions of sub-circuits. We apply the approach to a newly collected dataset of 7,568 real-world Qiskit-based quantum programs, showing that LintQ effectively identifies various programming problems, with a precision of 91.0% in its default configuration with the six best performing analyses. Comparing to a general-purpose linter and two existing quantum-aware techniques shows that almost all problems (92.1%) found by LintQ during our evaluation are missed by prior work. LintQ hence takes an important step toward reliable software in the growing field of quantum computing.
Although much research has been done on proposing new models or loss functions to improve the generalisation of artificial neural networks (ANNs), less attention has been directed to the impact of the training data on generalisation. In this work, we start from approximating the interaction between samples, i.e. how learning one sample would modify the model's prediction on other samples. Through analysing the terms involved in weight updates in supervised learning, we find that labels influence the interaction between samples. Therefore, we propose the labelled pseudo Neural Tangent Kernel (lpNTK) which takes label information into consideration when measuring the interactions between samples. We first prove that lpNTK asymptotically converges to the empirical neural tangent kernel in terms of the Frobenius norm under certain assumptions. Secondly, we illustrate how lpNTK helps to understand learning phenomena identified in previous work, specifically the learning difficulty of samples and forgetting events during learning. Moreover, we also show that using lpNTK to identify and remove poisoning training samples does not hurt the generalisation performance of ANNs.
Background: Timely prioritising and remediating vulnerabilities are paramount in the dynamic cybersecurity field, and one of the most widely used vulnerability scoring systems (CVSS) does not address the increasing likelihood of emerging an exploit code. Aims: We present SecScore, an innovative vulnerability severity score that enhances CVSS Threat metric group with statistical models from empirical evidences of real-world exploit codes. Method: SecScore adjusts the traditional CVSS score using an explainable and empirical method that more accurately and promptly captures the dynamics of exploit code development. Results: Our approach can integrate seamlessly into the assessment/prioritisation stage of several vulnerability management processes, improving the effectiveness of prioritisation and ensuring timely remediation. We provide real-world statistical analysis and models for a wide range of vulnerability types and platforms, demonstrating that SecScore is flexible according to the vulnerability's profile. Comprehensive experiments validate the value and timeliness of SecScore in vulnerability prioritisation. Conclusions: SecScore advances the vulnerability metrics theory and enhances organisational cybersecurity with practical insights.
Predictable adaptation of network depths can be an effective way to control inference latency and meet the resource condition of various devices. However, previous adaptive depth networks do not provide general principles and a formal explanation on why and which layers can be skipped, and, hence, their approaches are hard to be generalized and require long and complex training steps. In this paper, we present a practical approach to adaptive depth networks that is applicable to various networks with minimal training effort. In our approach, every hierarchical residual stage is divided into two sub-paths, and they are trained to acquire different properties through a simple self-distillation strategy. While the first sub-path is essential for hierarchical feature learning, the second one is trained to refine the learned features and minimize performance degradation if it is skipped. Unlike prior adaptive networks, our approach does not train every target sub-network in an iterative manner. At test time, however, we can connect these sub-paths in a combinatorial manner to select sub-networks of various accuracy-efficiency trade-offs from a single network. We provide a formal rationale for why the proposed training method can reduce overall prediction errors while minimizing the impact of skipping sub-paths. We demonstrate the generality and effectiveness of our approach with convolutional neural networks and transformers.
We introduce the paradigm of validated decentralized learning for undirected networks with heterogeneous data and possible adversarial infiltration. We require (a) convergence to a global empirical loss minimizer when adversaries are absent, and (b) either detection of adversarial presence of convergence to an admissible consensus irrespective of the adversarial configuration. To this end, we propose the VALID protocol which, to the best of our knowledge, is the first to achieve a validated learning guarantee. Moreover, VALID offers an O(1/T) convergence rate (under pertinent regularity assumptions), and computational and communication complexities comparable to non-adversarial distributed stochastic gradient descent. Remarkably, VALID retains optimal performance metrics in adversary-free environments, sidestepping the robustness penalties observed in prior byzantine-robust methods. A distinctive aspect of our study is a heterogeneity metric based on the norms of individual agents' gradients computed at the global empirical loss minimizer. This not only provides a natural statistic for detecting significant byzantine disruptions but also allows us to prove the optimality of VALID in wide generality. Lastly, our numerical results reveal that, in the absence of adversaries, VALID converges faster than state-of-the-art byzantine robust algorithms, while when adversaries are present, VALID terminates with each honest either converging to an admissible consensus of declaring adversarial presence in the network.
Spelling correction is the task of identifying spelling mistakes, typos, and grammatical mistakes in a given text and correcting them according to their context and grammatical structure. This work introduces "AraSpell," a framework for Arabic spelling correction using different seq2seq model architectures such as Recurrent Neural Network (RNN) and Transformer with artificial data generation for error injection, trained on more than 6.9 Million Arabic sentences. Thorough experimental studies provide empirical evidence of the effectiveness of the proposed approach, which achieved 4.8% and 1.11% word error rate (WER) and character error rate (CER), respectively, in comparison with labeled data of 29.72% WER and 5.03% CER. Our approach achieved 2.9% CER and 10.65% WER in comparison with labeled data of 10.02% CER and 50.94% WER. Both of these results are obtained on a test set of 100K sentences.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.