Soft robot serial chain manipulators with the capability for growth, stiffness control, and discrete joints have the potential to approach the dexterity of traditional robot arms, while improving safety, lowering cost, and providing an increased workspace, with potential application in home environments. This paper presents an approach for design optimization of such robots to reach specified targets while minimizing the number of discrete joints and thus construction and actuation costs. We define a maximum number of allowable joints, as well as hardware constraints imposed by the materials and actuation available for soft growing robots, and we formulate and solve an optimization problem to output a planar robot design, i.e., the total number of potential joints and their locations along the robot body, which reaches all the desired targets, avoids known obstacles, and maximizes the workspace. We demonstrate a process to rapidly construct the resulting soft growing robot design. Finally, we use our algorithm to evaluate the ability of this design to reach new targets and demonstrate the algorithm's utility as a design tool to explore robot capabilities given various constraints and objectives.
Optimization is used extensively in engineering, industry, and finance, and various methods are used to transform problems to the point where they are amenable to solution by numerical methods. We describe progress towards developing a framework, based on the Lean interactive proof assistant, for designing and applying such reductions in reliable and flexible ways.
Reconfigurable intelligent surface (RIS) has become a promising technology to improve wireless communication in recent years. It steers the incident signals to create a favorable propagation environment by controlling the reconfigurable passive elements with less hardware cost and lower power consumption. In this paper, we consider a RIS-aided multiuser multiple-input single-output downlink communication system. We aim to maximize the weighted sum-rate of all users by joint optimizing the active beamforming at the access point and the passive beamforming vector of the RIS elements. Unlike most existing works, we consider the more practical situation with the discrete phase shifts and imperfect channel state information (CSI). Specifically, for the situation that the discrete phase shifts and perfect CSI are considered, we first develop a deep quantization neural network (DQNN) to simultaneously design the active and passive beamforming while most reported works design them alternatively. Then, we propose an improved structure (I-DQNN) based on DQNN to simplify the parameters decision process when the control bits of each RIS element are greater than 1 bit. Finally, we extend the two proposed DQNN-based algorithms to the case that the discrete phase shifts and imperfect CSI are considered simultaneously. Our simulation results show that the two DQNN-based algorithms have better performance than traditional algorithms in the perfect CSI case, and are also more robust in the imperfect CSI case.
Distributed computing often gives rise to complex concurrent and interacting activities. In some cases several concurrent activities may be working together, i.e. cooperating, to solve a given problem; in other cases, the activities may be independent but needing to share common system resources for which they must compete. Many difficulties and limitations occur in the widely advocated objects and (trans)actions model when it is supposed to support cooperating activities. We have introduced previously the concept of coordinated atomic (CA) actions [Xu et al. 1995]; this paper analyzes and examines the derived objects and CA actions model for constructing fault-tolerant distributed systems and providing unified support for both cooperative and competitive concurrency. Our investigation reveals and clarifies several significant problems that have not previously been studied extensively, including the problem of ensuring consistent access to shared objects from a joint action as opposed to a set of independent actions. Conceptual and implementation-related solutions are proposed and illustrated.
We provide the first coreset for clustering points in $\mathbb{R}^d$ that have multiple missing values (coordinates). Previous coreset constructions only allow one missing coordinate. The challenge in this setting is that objective functions, like $k$-Means, are evaluated only on the set of available (non-missing) coordinates, which varies across points. Recall that an $\epsilon$-coreset of a large dataset is a small proxy, usually a reweighted subset of points, that $(1+\epsilon)$-approximates the clustering objective for every possible center set. Our coresets for $k$-Means and $k$-Median clustering have size $(jk)^{O(\min(j,k))} (\epsilon^{-1} d \log n)^2$, where $n$ is the number of data points, $d$ is the dimension and $j$ is the maximum number of missing coordinates for each data point. We further design an algorithm to construct these coresets in near-linear time, and consequently improve a recent quadratic-time PTAS for $k$-Means with missing values [Eiben et al., SODA 2021] to near-linear time. We validate our coreset construction, which is based on importance sampling and is easy to implement, on various real data sets. Our coreset exhibits a flexible tradeoff between coreset size and accuracy, and generally outperforms the uniform-sampling baseline. Furthermore, it significantly speeds up a Lloyd's-style heuristic for $k$-Means with missing values.
A future is a programming construct designed for concurrent and asynchronous evaluation of code, making it particularly useful for parallel processing. The future package implements the Future API for programming with futures in R. This minimal API provides sufficient constructs for implementing parallel versions of well-established, high-level map-reduce APIs. The future ecosystem supports exception handling, output and condition relaying, parallel random number generation, and automatic identification of globals lowering the threshold to parallelize code. The Future API bridges parallel frontends with parallel backends following the philosophy that end-users are the ones who choose the parallel backend while the developer focuses on what to parallelize. A variety of backends exist and third-party contributions meeting the specifications, which ensure that the same code works on all backends, are automatically supported. The future framework solves several problems not addressed by other parallel frameworks in R.
Vehicle-to-everything communication system is a strong candidate for improving the driving experience and automotive safety by linking vehicles to wireless networks. To take advantage of the full benefits of vehicle connectivity, it is essential to ensure a stable network connection between roadside unit (RSU) and fast-moving vehicles. Based on the extended Kalman filter (EKF), we develop a vehicle tracking algorithm to enable reliable radio connections. For the vehicle tracking algorithm, we focus on estimating the rapid changes in the beam direction of a high-mobility vehicle while reducing the feedback overhead. Furthermore, we design a beamforming codebook that considers the road layout and RSU. By leveraging the proposed beamforming codebook, vehicles on the road can expect a service quality similar to that of conventional cellular services. Finally, a beamformer selection algorithm is developed to secure sufficient gain for the system's link budget. Numerical results verify that the EKF-based vehicle tracking algorithm and the proposed beamforming structure are more suitable for vehicle-to-infrastructure networks compared to existing schemes.
Computational design problems arise in a number of settings, from synthetic biology to computer architectures. In this paper, we aim to solve data-driven model-based optimization (MBO) problems, where the goal is to find a design input that maximizes an unknown objective function provided access to only a static dataset of prior experiments. Such data-driven optimization procedures are the only practical methods in many real-world domains where active data collection is expensive (e.g., when optimizing over proteins) or dangerous (e.g., when optimizing over aircraft designs). Typical methods for MBO that optimize the design against a learned model suffer from distributional shift: it is easy to find a design that "fools" the model into predicting a high value. To overcome this, we propose conservative objective models (COMs), a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs, and uses it for optimization. Structurally, COMs resemble adversarial training methods used to overcome adversarial examples. COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems, including optimizing protein sequences, robot morphologies, neural network weights, and superconducting materials.
Colorizing a given gray-level image is an important task in the media and advertising industry. Due to the ambiguity inherent to colorization (many shades are often plausible), recent approaches started to explicitly model diversity. However, one of the most obvious artifacts, structural inconsistency, is rarely considered by existing methods which predict chrominance independently for every pixel. To address this issue, we develop a conditional random field based variational auto-encoder formulation which is able to achieve diversity while taking into account structural consistency. Moreover, we introduce a controllability mecha- nism that can incorporate external constraints from diverse sources in- cluding a user interface. Compared to existing baselines, we demonstrate that our method obtains more diverse and globally consistent coloriza- tions on the LFW, LSUN-Church and ILSVRC-2015 datasets.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.