亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision-centric joint perception and prediction (PnP) has become an emerging trend in autonomous driving research. It predicts the future states of the traffic participants in the surrounding environment from raw RGB images. However, it is still a critical challenge to synchronize features obtained at multiple camera views and timestamps due to inevitable geometric distortions and further exploit those spatial-temporal features. To address this issue, we propose a temporal bird's-eye-view pyramid transformer (TBP-Former) for vision-centric PnP, which includes two novel designs. First, a pose-synchronized BEV encoder is proposed to map raw image inputs with any camera pose at any time to a shared and synchronized BEV space for better spatial-temporal synchronization. Second, a spatial-temporal pyramid transformer is introduced to comprehensively extract multi-scale BEV features and predict future BEV states with the support of spatial-temporal priors. Extensive experiments on nuScenes dataset show that our proposed framework overall outperforms all state-of-the-art vision-based prediction methods.

相關內容

 Pyramid is a small, fast, down-to-earth Python web application development framework.

Temporal modeling is crucial for multi-frame human pose estimation. Most existing methods directly employ optical flow or deformable convolution to predict full-spectrum motion fields, which might incur numerous irrelevant cues, such as a nearby person or background. Without further efforts to excavate meaningful motion priors, their results are suboptimal, especially in complicated spatiotemporal interactions. On the other hand, the temporal difference has the ability to encode representative motion information which can potentially be valuable for pose estimation but has not been fully exploited. In this paper, we present a novel multi-frame human pose estimation framework, which employs temporal differences across frames to model dynamic contexts and engages mutual information objectively to facilitate useful motion information disentanglement. To be specific, we design a multi-stage Temporal Difference Encoder that performs incremental cascaded learning conditioned on multi-stage feature difference sequences to derive informative motion representation. We further propose a Representation Disentanglement module from the mutual information perspective, which can grasp discriminative task-relevant motion signals by explicitly defining useful and noisy constituents of the raw motion features and minimizing their mutual information. These place us to rank No.1 in the Crowd Pose Estimation in Complex Events Challenge on benchmark dataset HiEve, and achieve state-of-the-art performance on three benchmarks PoseTrack2017, PoseTrack2018, and PoseTrack21.

A semantic map of the road scene, covering fundamental road elements, is an essential ingredient in autonomous driving systems. It provides important perception foundations for positioning and planning when rendered in the Bird's-Eye-View (BEV). Currently, the prior knowledge of hypothetical depth can guide the learning of translating front perspective views into BEV directly with the help of calibration parameters. However, it suffers from geometric distortions in the representation of distant objects. In addition, another stream of methods without prior knowledge can learn the transformation between front perspective views and BEV implicitly with a global view. Considering that the fusion of different learning methods may bring surprising beneficial effects, we propose a Bi-Mapper framework for top-down road-scene semantic understanding, which incorporates a global view and local prior knowledge. To enhance reliable interaction between them, an asynchronous mutual learning strategy is proposed. At the same time, an Across-Space Loss (ASL) is designed to mitigate the negative impact of geometric distortions. Extensive results on nuScenes and Cam2BEV datasets verify the consistent effectiveness of each module in the proposed Bi-Mapper framework. Compared with exiting road mapping networks, the proposed Bi-Mapper achieves 5.0 higher IoU on the nuScenes dataset. Moreover, we verify the generalization performance of Bi-Mapper in a real-world driving scenario. Code will be available at //github.com/lynn-yu/Bi-Mapper.

Closing the domain gap between training and deployment and incorporating multiple sensor modalities are two challenging yet critical topics for self-driving. Existing work only focuses on single one of the above topics, overlooking the simultaneous domain and modality shift which pervasively exists in real-world scenarios. A model trained with multi-sensor data collected in Europe may need to run in Asia with a subset of input sensors available. In this work, we propose DualCross, a cross-modality cross-domain adaptation framework to facilitate the learning of a more robust monocular bird's-eye-view (BEV) perception model, which transfers the point cloud knowledge from a LiDAR sensor in one domain during the training phase to the camera-only testing scenario in a different domain. This work results in the first open analysis of cross-domain cross-sensor perception and adaptation for monocular 3D tasks in the wild. We benchmark our approach on large-scale datasets under a wide range of domain shifts and show state-of-the-art results against various baselines.

Forecasting the scalable future states of surrounding traffic participants in complex traffic scenarios is a critical capability for autonomous vehicles, as it enables safe and feasible decision-making. Recent successes in learning-based prediction and planning have introduced two primary challenges: generating accurate joint predictions for the environment and integrating prediction guidance for planning purposes. To address these challenges, we propose a two-stage integrated neural planning framework, termed OPGP, that incorporates joint prediction guidance from occupancy forecasting. The preliminary planning phase simultaneously outputs the predicted occupancy for various types of traffic actors based on imitation learning objectives, taking into account shared interactions, scene context, and actor dynamics within a unified Transformer structure. Subsequently, the transformed occupancy prediction guides optimization to further inform safe and smooth planning under Frenet coordinates. We train our planner using a large-scale, real-world driving dataset and validate it in open-loop configurations. Our proposed planner outperforms strong learning-based methods, exhibiting improved performance due to occupancy prediction guidance.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Since the cyberspace consolidated as fifth warfare dimension, the different actors of the defense sector began an arms race toward achieving cyber superiority, on which research, academic and industrial stakeholders contribute from a dual vision, mostly linked to a large and heterogeneous heritage of developments and adoption of civilian cybersecurity capabilities. In this context, augmenting the conscious of the context and warfare environment, risks and impacts of cyber threats on kinetic actuations became a critical rule-changer that military decision-makers are considering. A major challenge on acquiring mission-centric Cyber Situational Awareness (CSA) is the dynamic inference and assessment of the vertical propagations from situations that occurred at the mission supportive Information and Communications Technologies (ICT), up to their relevance at military tactical, operational and strategical views. In order to contribute on acquiring CSA, this paper addresses a major gap in the cyber defence state-of-the-art: the dynamic identification of Key Cyber Terrains (KCT) on a mission-centric context. Accordingly, the proposed KCT identification approach explores the dependency degrees among tasks and assets defined by commanders as part of the assessment criteria. These are correlated with the discoveries on the operational network and the asset vulnerabilities identified thorough the supported mission development. The proposal is presented as a reference model that reveals key aspects for mission-centric KCT analysis and supports its enforcement and further enforcement by including an illustrative application case.

With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods.

Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.

北京阿比特科技有限公司