亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The coronavirus disease (COVID-19) pandemic has changed our lives and still poses a challenge to science. Numerous studies have contributed to a better understanding of the pandemic. In particular, inhalation of aerosolised pathogens has been identified as essential for transmission. This information is crucial to slow the spread, but the individual likelihood of becoming infected in everyday situations remains uncertain. Mathematical models help estimate such risks. In this study, we propose how to model airborne transmission of SARS-CoV-2 at a local scale. In this regard, we combine microscopic crowd simulation with a new model for disease transmission. Inspired by compartmental models, we describe agents' health status as susceptible, exposed, infectious or recovered. Infectious agents exhale pathogens bound to persistent aerosols, whereas susceptible agents absorb pathogens when moving through an aerosol cloud left by the infectious agent. The transmission depends on the pathogen load of the aerosol cloud, which changes over time. We propose a 'high risk' benchmark scenario to distinguish critical from non-critical situations. Simulating indoor situations show that the new model is suitable to evaluate the risk of exposure qualitatively and, thus, enables scientists or even decision-makers to better assess the spread of COVID-19 and similar diseases.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 估計/估計量 · 深度學習 · 真實值 · 查準率/準確率 ·
2022 年 1 月 20 日

We propose a new deep learning-based method for estimating the occupancy of vegetation strata from airborne 3D LiDAR point clouds. Our model predicts rasterized occupancy maps for three vegetation strata corresponding to lower, medium, and higher cover. Our weakly-supervised training scheme allows our network to only be supervised with vegetation occupancy values aggregated over cylindrical plots containing thousands of points. Such ground truth is easier to produce than pixel-wise or point-wise annotations. Our method outperforms handcrafted and deep learning baselines in terms of precision by up to 30%, while simultaneously providing visual and interpretable predictions. We provide an open-source implementation along with a dataset of 199 agricultural plots to train and evaluate weakly supervised occupancy regression algorithms.

This paper proposes a novel mission planning platform, capable of efficiently deploying a team of UAVs to cover complex-shaped areas, in various remote sensing applications. Under the hood lies a novel optimization scheme for grid-based methods, utilizing Simulated Annealing algorithm, that significantly increases the achieved percentage of coverage and improves the qualitative features of the generated paths. Extensive simulated evaluation in comparison with a state-of-the-art alternative methodology, for coverage path planning (CPP) operations, establishes the performance gains in terms of achieved coverage and overall duration of the generated missions. On top of that, DARP algorithm is employed to allocate sub-tasks to each member of the swarm, taking into account each UAV's sensing and operational capabilities, their initial positions and any no-fly-zones possibly defined inside the operational area. This feature is of paramount importance in real-life applications, as it has the potential to achieve tremendous performance improvements in terms of time demanded to complete a mission, while at the same time it unlocks a wide new range of applications, that was previously not feasible due to the limited battery life of UAVs. In order to investigate the actual efficiency gains that are introduced by the multi-UAV utilization, a simulated study is performed as well. All of these capabilities are packed inside an end-to-end platform that eases the utilization of UAVs' swarms in remote sensing applications. Its versatility is demonstrated via two different real-life applications: (i) a photogrametry for precision agriculture and (ii) an indicative search and rescue for first responders missions, that were performed utilizing a swarm of commercial UAVs. The source code can be found at: //github.com/savvas-ap/mCPP-optimized-DARP

Accurate long-term trajectory prediction in complex scenes, where multiple agents (e.g., pedestrians or vehicles) interact with each other and the environment while attempting to accomplish diverse and often unknown goals, is a challenging stochastic forecasting problem. In this work, we propose MUSE, a new probabilistic modeling framework based on a cascade of Conditional VAEs, which tackles the long-term, uncertain trajectory prediction task using a coarse-to-fine multi-factor forecasting architecture. In its Macro stage, the model learns a joint pixel-space representation of two key factors, the underlying environment and the agent movements, to predict the long and short-term motion goals. Conditioned on them, the Micro stage learns a fine-grained spatio-temporal representation for the prediction of individual agent trajectories. The VAE backbones across the two stages make it possible to naturally account for the joint uncertainty at both levels of granularity. As a result, MUSE offers diverse and simultaneously more accurate predictions compared to the current state-of-the-art. We demonstrate these assertions through a comprehensive set of experiments on nuScenes and SDD benchmarks as well as PFSD, a new synthetic dataset, which challenges the forecasting ability of models on complex agent-environment interaction scenarios.

ICT systems provide detailed information on computer network traffic. However, due to storage limitations, some of the information on past traffic is often only retained in an aggregated form. In this paper we show that Linear Gaussian State Space Models yield simple yet effective methods to make predictions based on time series at different aggregation levels. The models link coarse-grained and fine-grained time series to a single model that is able to provide fine-grained predictions. Our numerical experiments show up to 3.7 times improvement in expected mean absolute forecast error when forecasts are made using, instead of ignoring, additional coarse-grained observations. The forecasts are obtained in a Bayesian formulation of the model, which allows for provisioning of a traffic prediction service with highly informative priors obtained from coarse-grained historical data.

Simulation studies are commonly used to evaluate the performance of newly developed meta-analysis methods. For methodology that is developed for an aggregated data meta-analysis, researchers often resort to simulation of the aggregated data directly, instead of simulating individual participant data from which the aggregated data would be calculated in reality. Clearly, distributional characteristics of the aggregated data statistics may be derived from distributional assumptions of the underlying individual data, but they are often not made explicit in publications. This paper provides the distribution of the aggregated data statistics that were derived from a heteroscedastic mixed effects model for continuous individual data. As a result, we provide a procedure for directly simulating the aggregated data statistics. We also compare our distributional findings with other simulation approaches of aggregated data used in literature by describing their theoretical differences and by conducting a simulation study for three meta-analysis methods: DerSimonian and Laird's pooled estimate and the Trim & Fill and PET-PEESE method for adjustment of publication bias. We demonstrate that the choices of simulation model for aggregated data may have a relevant impact on (the conclusions of) the performance of the meta-analysis method. We recommend the use of multiple aggregated data simulation models for investigation of new methodology to determine sensitivity or otherwise make the individual participant data model explicit that would lead to the distributional choices of the aggregated data statistics used in the simulation.

In this paper, we present three estimators of the ROC curve when missing observations arise among the biomarkers. Two of the procedures assume that we have covariates that allow to estimate the propensity and the estimators are obtained using an inverse probability weighting method or a smoothed version of it. The other one assumes that the covariates are related to the biomarkers through a regression model which enables us to construct convolution--based estimators of the distribution and quantile functions. Consistency results are obtained under mild conditions. Through a numerical study we evaluate the finite sample performance of the different proposals. A real data set is also analysed.

As the scale of distributed training grows, communication becomes a bottleneck. To accelerate the communication, recent works introduce In-Network Aggregation (INA), which moves the gradients summation into network middle-boxes, e.g., programmable switches to reduce the traffic volume. However, switch memory is scarce compared to the volume of gradients transmitted in distributed training. Although literature applies methods like pool-based streaming or dynamic sharing to tackle the mismatch, switch memory is still a potential performance bottleneck. Furthermore, we observe the under-utilization of switch memory due to the synchronization requirement for aggregator deallocation in recent works. To improve the switch memory utilization, we propose ESA, an $\underline{E}$fficient Switch Memory $\underline{S}$cheduler for In-Network $\underline{A}$ggregation. At its cores, ESA enforces the preemptive aggregator allocation primitive and introduces priority scheduling at the data-plane, which improves the switch memory utilization and average job completion time (JCT). Experiments show that ESA can improve the average JCT by up to $1.35\times$.

Understanding the joint impact of vaccination and non-pharmaceutical interventions on COVID-19 development is important for making public health decisions that control the pandemic. Recently, we created a method in forecasting the daily number of confirmed cases of infectious diseases by combining a mechanistic ordinary differential equation (ODE) model for infectious classes and a generalized boosting machine learning model (GBM) for predicting how public health policies and mobility data affect the transmission rate in the ODE model [WWR+]. In this paper, we extend the method to the post-vaccination period, accordingly obtain a retrospective forecast of COVID-19 daily confirmed cases in the US, and identify the relative influence of the policies used as the predictor variables. In particular, our ODE model contains both partially and fully vaccinated compartments and accounts for the breakthrough cases, that is, vaccinated individuals can still get infected. Our results indicate that the inclusion of data on non-pharmaceutical interventions can significantly improve the accuracy of the predictions. With the use of policy data, the model predicts the number of daily infected cases up to 35 days in the future, with an average mean absolute percentage error of 34%, which is further improved to 21% if combined with human mobility data. Moreover, similar to the pre-vaccination study, the most influential predictor variable remains the policy of restrictions on gatherings. The modeling approach used in this work can help policymakers design control measures as variant strains threaten public health in the future.

Imitation learning enables agents to reuse and adapt the hard-won expertise of others, offering a solution to several key challenges in learning behavior. Although it is easy to observe behavior in the real-world, the underlying actions may not be accessible. We present a new method for imitation solely from observations that achieves comparable performance to experts on challenging continuous control tasks while also exhibiting robustness in the presence of observations unrelated to the task. Our method, which we call FORM (for "Future Observation Reward Model") is derived from an inverse RL objective and imitates using a model of expert behavior learned by generative modelling of the expert's observations, without needing ground truth actions. We show that FORM performs comparably to a strong baseline IRL method (GAIL) on the DeepMind Control Suite benchmark, while outperforming GAIL in the presence of task-irrelevant features.

In recommender systems, cold-start issues are situations where no previous events, e.g. ratings, are known for certain users or items. In this paper, we focus on the item cold-start problem. Both content information (e.g. item attributes) and initial user ratings are valuable for seizing users' preferences on a new item. However, previous methods for the item cold-start problem either 1) incorporate content information into collaborative filtering to perform hybrid recommendation, or 2) actively select users to rate the new item without considering content information and then do collaborative filtering. In this paper, we propose a novel recommendation scheme for the item cold-start problem by leverage both active learning and items' attribute information. Specifically, we design useful user selection criteria based on items' attributes and users' rating history, and combine the criteria in an optimization framework for selecting users. By exploiting the feedback ratings, users' previous ratings and items' attributes, we then generate accurate rating predictions for the other unselected users. Experimental results on two real-world datasets show the superiority of our proposed method over traditional methods.

北京阿比特科技有限公司