亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Code Clone Detection, which aims to retrieve functionally similar programs from large code bases, has been attracting increasing attention. Modern software often involves a diverse range of programming languages. However, current code clone detection methods are generally limited to only a few popular programming languages due to insufficient annotated data as well as their own model design constraints. To address these issues, we present AdaCCD, a novel cross-lingual adaptation method that can detect cloned codes in a new language without any annotations in that language. AdaCCD leverages language-agnostic code representations from pre-trained programming language models and propose an Adaptively Refined Contrastive Learning framework to transfer knowledge from resource-rich languages to resource-poor languages. We evaluate the cross-lingual adaptation results of AdaCCD by constructing a multilingual code clone detection benchmark consisting of 5 programming languages. AdaCCD achieves significant improvements over other baselines, and it is even comparable to supervised fine-tuning.

相關內容

Modern deep learning models, growing larger and more complex, have demonstrated exceptional generalization and accuracy due to training on huge datasets. This trend is expected to continue. However, the increasing size of these models poses challenges in training, as traditional centralized methods are limited by memory constraints at such scales. This paper proposes an asynchronous decentralized training paradigm for large modern deep learning models that harnesses the compute power of regular heterogeneous PCs with limited resources connected across the internet to achieve favourable performance metrics. Ravnest facilitates decentralized training by efficiently organizing compute nodes into clusters with similar data transfer rates and compute capabilities, without necessitating that each node hosts the entire model. These clusters engage in $\textit{Zero-Bubble Asynchronous Model Parallel}$ training, and a $\textit{Parallel Multi-Ring All-Reduce}$ method is employed to effectively execute global parameter averaging across all clusters. We have framed our asynchronous SGD loss function as a block structured optimization problem with delayed updates and derived an optimal convergence rate of $O\left(\frac{1}{\sqrt{K}}\right)$. We further discuss linear speedup with respect to the number of participating clusters and the bound on the staleness parameter.

Recently, the advent of large language models (LLMs) has revolutionized generative agents. Among them, Role-Playing Conversational Agents (RPCAs) attract considerable attention due to their ability to emotionally engage users. However, the absence of a comprehensive benchmark impedes progress in this field. To bridge this gap, we introduce CharacterEval, a Chinese benchmark for comprehensive RPCA assessment, complemented by a tailored high-quality dataset. The dataset comprises 1,785 multi-turn role-playing dialogues, encompassing 23,020 examples and featuring 77 characters derived from Chinese novels and scripts. It was carefully constructed, beginning with initial dialogue extraction via GPT-4, followed by rigorous human-led quality control, and enhanced with in-depth character profiles sourced from Baidu Baike. CharacterEval employs a multifaceted evaluation approach, encompassing thirteen targeted metrics on four dimensions. Comprehensive experiments on CharacterEval demonstrate that Chinese LLMs exhibit more promising capabilities than GPT-4 in Chinese role-playing conversation. Source code, data source and reward model will be publicly accessible at //github.com/morecry/CharacterEval.

The Internet of Things (IoT) technology uses small and cost-effective sensors for various applications, such as Industrial IoT. However, these sensor nodes are powered by fixed-size batteries, which creates a trade-off between network performance and long-term sustainability. Moreover, some applications require the network to provide a certain level of service, such as a lower delay for critical data, while ensuring the operational reliability of sensor nodes. To address this energy challenge, external energy harvesting sources, such as solar and wind, offer promising and eco-friendly solutions. However, the available energy from a single energy source is insufficient to meet these requirements. This drives the utilization of a hybrid energy harvesting approach, such as the integration of solar and wind energy harvesters, to increase the amount of harvested energy. Nevertheless, to fully utilize the available energy, which is dynamic in nature, the sensor node must adapt its operation to ensure sustainable operation and enhanced network performance. Therefore, this paper proposes a hybrid energy harvesting-based energy neutral operation (ENO) medium access control (MAC) protocol, called HENO-MAC, that allows the receiver node to harvest energy from the solar-wind harvesters and adapt its duty cycle accordingly. The performance of the proposed HENO-MAC was evaluated using the latest realistic solar and wind data for two consecutive days in GreenCastalia. The simulation results demonstrate that the duty cycle mechanism of HENO-MAC effectively utilizes the harvested energy to achieve ENO and uses the available energy resources efficiently to reduce the packet delay for all packets and the highest priority packet by up to 28.5% and 27.3%, respectively, when compared with other existing MAC protocols.

Generating 3D human models directly from text helps reduce the cost and time of character modeling. However, achieving multi-attribute controllable and realistic 3D human avatar generation is still challenging due to feature coupling and the scarcity of realistic 3D human avatar datasets. To address these issues, we propose Text2Avatar, which can generate realistic-style 3D avatars based on the coupled text prompts. Text2Avatar leverages a discrete codebook as an intermediate feature to establish a connection between text and avatars, enabling the disentanglement of features. Furthermore, to alleviate the scarcity of realistic style 3D human avatar data, we utilize a pre-trained unconditional 3D human avatar generation model to obtain a large amount of 3D avatar pseudo data, which allows Text2Avatar to achieve realistic style generation. Experimental results demonstrate that our method can generate realistic 3D avatars from coupled textual data, which is challenging for other existing methods in this field.

We describe QGLAB, a new MATLAB package for analyzing partial differential equations on quantum graphs. The software is built on the existing, object-oriented MATLAB directed-graph class, inheriting its structure and adding additional easy-to-use features. The package allows one to construct a quantum graph and accurately compute the spectrum of elliptic operators, solutions to Poisson problems, the linear and nonlinear time evolution of a variety of PDEs, the continuation of branches of steady states (including locating and switching branches at bifurcations) and more. It uses a unified framework to implement finite-difference and Chebyshev discretizations of differential operators on a quantum graph. For simplicity, the package overloads many built-in MATLAB functions to work on the class.

With the rapid development of deep learning (DL) in recent years, automatic modulation recognition (AMR) with DL has achieved high accuracy. However, insufficient training signal data in complicated channel environments and large-scale DL models are critical factors that make DL methods difficult to deploy in practice. Aiming to these problems, we propose a novel neural network named convolution-linked signal transformer (ClST) and a novel knowledge distillation method named signal knowledge distillation (SKD). The ClST is accomplished through three primary modifications: a hierarchy of transformer containing convolution, a novel attention mechanism named parallel spatial-channel attention (PSCA) mechanism and a novel convolutional transformer block named convolution-transformer projection (CTP) to leverage a convolutional projection. The SKD is a knowledge distillation method to effectively reduce the parameters and complexity of neural networks. We train two lightweight neural networks using the SKD algorithm, KD-CNN and KD-MobileNet, to meet the demand that neural networks can be used on miniaturized devices. The simulation results demonstrate that the ClST outperforms advanced neural networks on all datasets. Moreover, both KD-CNN and KD-MobileNet obtain higher recognition accuracy with less network complexity, which is very beneficial for the deployment of AMR on miniaturized communication devices.

Recent research has shown that adversarial patches can manipulate outputs from object detection models. However, the conspicuous patterns on these patches may draw more attention and raise suspicions among humans. Moreover, existing works have primarily focused on the attack performance of individual models and have neglected the generation of adversarial patches for ensemble attacks on multiple object detection models. To tackle these concerns, we propose a novel approach referred to as the More Vivid Patch (MVPatch), which aims to improve the transferability and stealthiness of adversarial patches while considering the limitations observed in prior paradigms, such as easy identification and poor transferability. Our approach incorporates an attack algorithm that decreases object confidence scores of multiple object detectors by using the ensemble attack loss function, thereby enhancing the transferability of adversarial patches. Additionally, we propose a lightweight visual similarity measurement algorithm realized by the Compared Specified Image Similarity (CSS) loss function, which allows for the generation of natural and stealthy adversarial patches without the reliance on additional generative models. Extensive experiments demonstrate that the proposed MVPatch algorithm achieves superior attack transferability compared to similar algorithms in both digital and physical domains, while also exhibiting a more natural appearance. These findings emphasize the remarkable stealthiness and transferability of the proposed MVPatch attack algorithm.

Unbiased Scene Graph Generation (USGG) aims to address biased predictions in SGG. To that end, data transfer methods are designed to convert coarse-grained predicates into fine-grained ones, mitigating imbalanced distribution. However, them overlook contextual relevance between transferred labels and subject-object pairs, such as unsuitability of 'eating' for 'woman-table'. Furthermore, they typically involve a two-stage process with significant computational costs, starting with pre-training a model for data transfer, followed by training from scratch using transferred labels. Thus, we introduce a plug-and-play method named CITrans, which iteratively trains SGG models with progressively enhanced data. First, we introduce Context-Restricted Transfer (CRT), which imposes subject-object constraints within predicates' semantic space to achieve fine-grained data transfer. Subsequently, Efficient Iterative Learning (EIL) iteratively trains models and progressively generates enhanced labels which are consistent with model's learning state, thereby accelerating the training process. Finally, extensive experiments show that CITrans achieves state-of-the-art and results with high efficiency.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

北京阿比特科技有限公司