This paper presents a research study focused on uncovering the hidden population distribution from the viewpoint of a variational non-Bayesian approach. It asserts that if the hidden probability density function (PDF) has continuous partial derivatives of at least half the dimension's order, it can be perfectly reconstructed from a stationary ergodic process: First, we establish that if the PDF belongs to the Wiener algebra, its canonical ensemble form is uniquely determined through the Fr\'echet differentiation of the Kullback-Leibler divergence, aiming to minimize their cross-entropy. Second, we utilize the result that the differentiability of the PDF implies its membership in the Wiener algebra. Third, as the energy function of the canonical ensemble is defined as a series, the problem transforms into finding solutions to the equations of analytic series for the coefficients in the energy function. Naturally, through the use of truncated polynomial series and by demonstrating the convergence of partial sums of the energy function, we ensure the efficiency of approximation with a finite number of data points. Finally, through numerical experiments, we approximate the PDF from a random sample obtained from a bivariate normal distribution and also provide approximations for the mean and covariance from the PDF. This study substantiates the excellence of its results and their practical applicability.
With the natural evolution of the web, the need for decentralization has rendered the current centralized education system out of date. The student does not "own" their credentials, as the only way their accomplishments are directly linked to their person and considered valuable is by verification through a stamp of an expensive, prestigious institution. However, going to a university is no longer the only way to acquire an education; open-source learning material is widely available and accessible through the internet. However, our society does not deem these methods of education as verifiable if they do not include a degree or certificate. Additionally, a valid certificate for the vast majority of open-source courses costs a few hundred dollars to obtain. The centralized nature of education inadvertently places students in underprivileged communities at a disadvantage in comparison to students in economically advantaged communities, thus a decentralized approach to education would eliminate the vast majority of such discrepancies. In the present paper, we integrate Decentralized Identity (DID) with Web 3.0 to upload credentials linked directly to the user. Each credential is appended to an Ethereum blockchain that, by design, cannot be altered once uploaded. We include DID document based access controls to display the candidate's upload and verification history. Finally, we utilize TLS protocols to provide a secure connection to the internet for ensuring non-fungibility of credentials and authentication of users.
We introduce UrbanSyn, a photorealistic dataset acquired through semi-procedurally generated synthetic urban driving scenarios. Developed using high-quality geometry and materials, UrbanSyn provides pixel-level ground truth, including depth, semantic segmentation, and instance segmentation with object bounding boxes and occlusion degree. It complements GTAV and Synscapes datasets to form what we coin as the 'Three Musketeers'. We demonstrate the value of the Three Musketeers in unsupervised domain adaptation for image semantic segmentation. Results on real-world datasets, Cityscapes, Mapillary Vistas, and BDD100K, establish new benchmarks, largely attributed to UrbanSyn. We make UrbanSyn openly and freely accessible (www.urbansyn.org).
Individual treatment effect (ITE) estimation requires adjusting for the covariate shift between populations with different treatments, and deep representation learning has shown great promise in learning a balanced representation of covariates. However the existing methods mostly consider the scenario of binary treatments. In this paper, we consider the more practical and challenging scenario in which the treatment is a continuous variable (e.g. dosage of a medication), and we address the two main challenges of this setup. We propose the adversarial counterfactual regression network (ACFR) that adversarially minimizes the representation imbalance in terms of KL divergence, and also maintains the impact of the treatment value on the outcome prediction by leveraging an attention mechanism. Theoretically we demonstrate that ACFR objective function is grounded in an upper bound on counterfactual outcome prediction error. Our experimental evaluation on semi-synthetic datasets demonstrates the empirical superiority of ACFR over a range of state-of-the-art methods.
This article presents a pipeline for automated fact-checking leveraging publicly available Language Models and data. The objective is to assess the accuracy of textual claims using evidence from a ground-truth evidence corpus. The pipeline consists of two main modules -- the evidence retrieval and the claim veracity evaluation. Our primary focus is on the ease of deployment in various languages that remain unexplored in the field of automated fact-checking. Unlike most similar pipelines, which work with evidence sentences, our pipeline processes data on a paragraph level, simplifying the overall architecture and data requirements. Given the high cost of annotating language-specific fact-checking training data, our solution builds on the Question Answering for Claim Generation (QACG) method, which we adapt and use to generate the data for all models of the pipeline. Our strategy enables the introduction of new languages through machine translation of only two fixed datasets of moderate size. Subsequently, any number of training samples can be generated based on an evidence corpus in the target language. We provide open access to all data and fine-tuned models for Czech, English, Polish, and Slovak pipelines, as well as to our codebase that may be used to reproduce the results.We comprehensively evaluate the pipelines for all four languages, including human annotations and per-sample difficulty assessment using Pointwise V-information. The presented experiments are based on full Wikipedia snapshots to promote reproducibility. To facilitate implementation and user interaction, we develop the FactSearch application featuring the proposed pipeline and the preliminary feedback on its performance.
This paper introduces and characterizes a new family of continuous probability distributions applicable to norm distributions in three-dimensional random spaces, specifically for the Euclidean norm of three random Gaussian variables with non-zero means. The distribution is specified over the semi-infinite range $[0,\infty)$ and is notable for its computational tractability. Building on this foundation, we also introduce a separate family of continuous probability distributions suitable for power distributions in three-dimensional random spaces. Despite being previously unknown, these distributions are attractive for numerous applications, some of which are discussed in this work.
The recent success of large language models (LLMs) has paved the way for their adoption in the high-stakes domain of healthcare. Specifically, the application of LLMs in patient-trial matching, which involves assessing patient eligibility against clinical trial's nuanced inclusion and exclusion criteria, has shown promise. Recent research has shown that GPT-3.5, a widely recognized LLM developed by OpenAI, can outperform existing methods with minimal 'variable engineering' by simply comparing clinical trial information against patient summaries. However, there are significant challenges associated with using closed-source proprietary LLMs like GPT-3.5 in practical healthcare applications, such as cost, privacy and reproducibility concerns. To address these issues, this study presents the first systematic examination of the efficacy of both proprietary (GPT-3.5, and GPT-4) and open-source LLMs (LLAMA 7B,13B, and 70B) for the task of patient-trial matching. Employing a multifaceted evaluation framework, we conducted extensive automated and human-centric assessments coupled with a detailed error analysis for each model. To enhance the adaptability of open-source LLMs, we have created a specialized synthetic dataset utilizing GPT-4, enabling effective fine-tuning under constrained data conditions. Our findings reveal that open-source LLMs, when fine-tuned on this limited and synthetic dataset, demonstrate performance parity with their proprietary counterparts. This presents a massive opportunity for their deployment in real-world healthcare applications. To foster further research and applications in this field, we release both the annotated evaluation dataset along with the fine-tuned LLM -- Trial-LLAMA -- for public use.
Agricultural research is essential for increasing food production to meet the requirements of an increasing population in the coming decades. Recently, satellite technology has been improving rapidly and deep learning has seen much success in generic computer vision tasks and many application areas which presents an important opportunity to improve analysis of agricultural land. Here we present a systematic review of 150 studies to find the current uses of deep learning on satellite imagery for agricultural research. Although we identify 5 categories of agricultural monitoring tasks, the majority of the research interest is in crop segmentation and yield prediction. We found that, when used, modern deep learning methods consistently outperformed traditional machine learning across most tasks; the only exception was that Long Short-Term Memory (LSTM) Recurrent Neural Networks did not consistently outperform Random Forests (RF) for yield prediction. The reviewed studies have largely adopted methodologies from generic computer vision, except for one major omission: benchmark datasets are not utilised to evaluate models across studies, making it difficult to compare results. Additionally, some studies have specifically utilised the extra spectral resolution available in satellite imagery, but other divergent properties of satellite images - such as the hugely different scales of spatial patterns - are not being taken advantage of in the reviewed studies.
Large language models (LLMs) have recently transformed both the academic and industrial landscapes due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost for pre-training due to their unprecedented amounts of parameters. The disadvantage is exacerbated when new knowledge frequently needs to be introduced into the pre-trained model. Therefore, it is imperative to develop effective and efficient techniques to update pre-trained LLMs. Traditional methods encode new knowledge in pre-trained LLMs through direct fine-tuning. However, naively re-training LLMs can be computationally intensive and risks degenerating valuable pre-trained knowledge irrelevant to the update in the model. Recently, Knowledge-based Model Editing (KME) has attracted increasing attention, which aims to precisely modify the LLMs to incorporate specific knowledge, without negatively influencing other irrelevant knowledge. In this survey, we aim to provide a comprehensive and in-depth overview of recent advances in the field of KME. We first introduce a general formulation of KME to encompass different KME strategies. Afterward, we provide an innovative taxonomy of KME techniques based on how the new knowledge is introduced into pre-trained LLMs, and investigate existing KME strategies while analyzing key insights, advantages, and limitations of methods from each category. Moreover, representative metrics, datasets, and applications of KME are introduced accordingly. Finally, we provide an in-depth analysis regarding the practicality and remaining challenges of KME and suggest promising research directions for further advancement in this field.
Happiness underlines the intuitive constructs of a specified population based on positive psychological outcomes. It is the cornerstone of the cognitive skills and exploring university student's happiness has been the essence of the researchers lately. In this study, we have analyzed the university student's happiness and its facets using statistical distribution charts; designing research questions. Furthermore, regression analysis, machine learning, and clustering algorithms were applied on the world happiness dataset and university student's dataset for training and testing respectively. Philosophy was the happiest department while Sociology the saddest; average happiness score being 2.8 and 2.44 respectively. Pearson coefficient of correlation was 0.74 for Health. Predicted happiness score was 5.2 and the goodness of model fit was 51%. train and test error being 0.52, 0.47 respectively. On a Confidence Interval(CI) of 5% p-value was least for Campus Environment(CE) and University Reputation(UR) and maximum for Extra-curricular Activities(ECA) and Work Balance(WB) (i.e. 0.184 and 0.228 respectively). RF with Clustering got the highest accuracy(89%) and F score(0.98) and the least error(17.91%), hence turned out to be best for our study
The world population is anticipated to increase by close to 2 billion by 2050 causing a rapid escalation of food demand. A recent projection shows that the world is lagging behind accomplishing the "Zero Hunger" goal, in spite of some advancements. Socio-economic and well being fallout will affect the food security. Vulnerable groups of people will suffer malnutrition. To cater to the needs of the increasing population, the agricultural industry needs to be modernized, become smart, and automated. Traditional agriculture can be remade to efficient, sustainable, eco-friendly smart agriculture by adopting existing technologies. In this survey paper the authors present the applications, technological trends, available datasets, networking options, and challenges in smart agriculture. How Agro Cyber Physical Systems are built upon the Internet-of-Agro-Things is discussed through various application fields. Agriculture 4.0 is also discussed as a whole. We focus on the technologies, such as Artificial Intelligence (AI) and Machine Learning (ML) which support the automation, along with the Distributed Ledger Technology (DLT) which provides data integrity and security. After an in-depth study of different architectures, we also present a smart agriculture framework which relies on the location of data processing. We have divided open research problems of smart agriculture as future research work in two groups - from a technological perspective and from a networking perspective. AI, ML, the blockchain as a DLT, and Physical Unclonable Functions (PUF) based hardware security fall under the technology group, whereas any network related attacks, fake data injection and similar threats fall under the network research problem group.