亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The brain projects require the collection of massive electrophysiological data, aiming to the longitudinal, sectional, or populational neuroscience studies. Quality metrics automatically label the data after centralized preprocessing. However, although the waveforms-based metrics are partially useful, they may be unreliable by neglecting the spectral profiles. Here, we detected the phenomenon of parallel log spectra (PaLOS) that the scalp EEG power in the log scale were parallel to each other from 10% of 2549 HBN EEG. This phenomenon was reproduced in 8% of 412 PMDT EEG from 4 databases. We designed the PaLOS index (PaLOSi) to indicate this phenomenon by decomposing the cross-spectra at different frequencies into the common principal component spaces. We found that the PaLOS biophysically implied a prominently dominant dipole in the source space which was implausible for the resting EEG. And it may be practically resulted from excessive preprocessing. Compared with the 1966 normative EEG cross-spectra, the HBN and the PMDT EEG with PaLOS presented generally much higher electrode pairwise coherences and higher similarity of coherence-based network patterns, which went against the known frequency dependent characteristic of coherence networks. We suggest the PaLOSi should lay in the range of 0.4-0.7 for large resting EEG quality assurance.

相關內容

面向服(fu)務的前后端通信標準(zhun) Not React

We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.

Home-based physical therapies are effective if the prescribed exercises are correctly executed and patients adhere to these routines. This is specially important for older adults who can easily forget the guidelines from therapists. Inertial Measurement Units (IMUs) are commonly used for tracking exercise execution giving information of patients' motion data. In this work, we propose the use of Machine Learning techniques to recognize which exercise is being carried out and to assess if the recognized exercise is properly executed by using data from four IMUs placed on the person limbs. To the best of our knowledge, both tasks have never been addressed together as a unique complex task before. However, their combination is needed for the complete characterization of the performance of physical therapies. We evaluate the performance of six machine learning classifiers in three contexts: recognition and evaluation in a single classifier, recognition of correct exercises, excluding the wrongly performed exercises, and a two-stage approach that first recognizes the exercise and then evaluates it. We apply our proposal to a set of 8 exercises of the upper-and lower-limbs designed for maintaining elderly people health status. To do so, the motion of volunteers were monitored with 4 IMUs. We obtain accuracies of 88.4 \% and the 91.4 \% in the two initial scenarios. In the third one, the recognition provides an accuracy of 96.2 \%, whereas the exercise evaluation varies between 93.6 \% and 100.0 \%. This work proves the feasibility of IMUs for a complete monitoring of physical therapies in which we can get information of which exercise is being performed and its quality, as a basis for designing virtual coaches.

Following White's approach of robust multiple linear regression, we give asymptotic confidence intervals for the multiple correlation coefficient R2 under minimal moment conditions. We also give the asymptotic joint distribution of the empirical estimators of the individual R2's. Through different sets of simulations, we show that the procedure is indeed robust (contrary to the procedure involving the near exact distribution of the empirical estimator of R2 is the multivariate Gaussian case) and can be also applied to count linear regression.

A crucial challenge for solving problems in conflict research is in leveraging the semi-supervised nature of the data that arise. Observed response data such as counts of battle deaths over time indicate latent processes of interest such as intensity and duration of conflicts, but defining and labeling instances of these unobserved processes requires nuance and imprecision. The availability of such labels, however, would make it possible to study the effect of intervention-related predictors - such as ceasefires - directly on conflict dynamics (e.g., latent intensity) rather than through an intermediate proxy like observed counts of battle deaths. Motivated by this problem and the new availability of the ETH-PRIO Civil Conflict Ceasefires data set, we propose a Bayesian autoregressive (AR) hidden Markov model (HMM) framework as a sufficiently flexible machine learning approach for semi-supervised regime labeling with uncertainty quantification. We motivate our approach by illustrating the way it can be used to study the role that ceasefires play in shaping conflict dynamics. This ceasefires data set is the first systematic and globally comprehensive data on ceasefires, and our work is the first to analyze this new data and to explore the effect of ceasefires on conflict dynamics in a comprehensive and cross-country manner.

Using well-known mathematical problems for encryption is a widely used technique because they are computationally hard and provide security against potential attacks on the encryption method. The subset sum problem (SSP) can be defined as finding a subset of integers from a given set, whose sum is equal to a specified integer. The classic SSP has various variants, one of which is the multiple-subset problem (MSSP). In the MSSP, the goal is to select items from a given set and distribute them among multiple bins, en-suring that the capacity of each bin is not exceeded while maximizing the total weight of the selected items. This approach addresses a related problem with a different perspective. Here a related different kind of problem is approached: given a set of sets A={A1, A2..., An}, find an integer s for which every subset of the given sets is summed up to, if such an integer exists. The problem is NP-complete when considering it as a variant of SSP. However, there exists an algorithm that is relatively efficient for known pri-vate keys. This algorithm is based on dispensing non-relevant values of the potential sums. In this paper we present the encryption scheme based on MSSP and present its novel usage and implementation in communication.

For appropriate Gaussian processes, as a corollary of the majorizing measure theorem, Michel Talagrand (1987) proved that the event that the supremum is significantly larger than its expectation can be covered by a set of half-spaces whose sum of measures is small. We prove a conjecture of Talagrand that is the analog of this result in the Bernoulli-$p$ setting, and answer a question of Talagrand on the analogous result for general positive empirical processes.

Recently, a family of unconventional integrators for ODEs with polynomial vector fields was proposed, based on the polarization of vector fields. The simplest instance is the by now famous Kahan discretization for quadratic vector fields. All these integrators seem to possess remarkable conservation properties. In particular, it has been proved that, when the underlying ODE is Hamiltonian, its polarization discretization possesses an integral of motion and an invariant volume form. In this note, we propose a new algebraic approach to derivation of the integrals of motion for polarization discretizations.

When different researchers study the same research question using the same dataset they may obtain different and potentially even conflicting results. This is because there is often substantial flexibility in researchers' analytical choices, an issue also referred to as ''researcher degrees of freedom''. Combined with selective reporting of the smallest p-value or largest effect, researcher degrees of freedom may lead to an increased rate of false positive and overoptimistic results. In this paper, we address this issue by formalizing the multiplicity of analysis strategies as a multiple testing problem. As the test statistics of different analysis strategies are usually highly dependent, a naive approach such as the Bonferroni correction is inappropriate because it leads to an unacceptable loss of power. Instead, we propose using the ''minP'' adjustment method, which takes potential test dependencies into account and approximates the underlying null distribution of the minimal p-value through a permutation-based procedure. This procedure is known to achieve more power than simpler approaches while ensuring a weak control of the family-wise error rate. We illustrate our approach for addressing researcher degrees of freedom by applying it to a study on the impact of perioperative paO2 on post-operative complications after neurosurgery. A total of 48 analysis strategies are considered and adjusted using the minP procedure. This approach allows to selectively report the result of the analysis strategy yielding the most convincing evidence, while controlling the type 1 error -- and thus the risk of publishing false positive results that may not be replicable.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

One critical issue for chat systems is to stay consistent about preferences, opinions, beliefs and facts of itself, which has been shown a difficult problem. In this work, we study methods to assess and bolster utterance consistency of chat systems. A dataset is first developed for studying the inconsistencies, where inconsistent dialogue responses, explanations of the inconsistencies, and recovery utterances are authored by annotators. This covers the life span of inconsistencies, namely introduction, understanding, and resolution. Building on this, we introduce a set of tasks centered on dialogue consistency, specifically focused on its detection and resolution. Our experimental findings indicate that our dataset significantly helps the progress in identifying and resolving conversational inconsistencies, and current popular large language models like ChatGPT which are good at resolving inconsistencies however still struggle with detection.

北京阿比特科技有限公司