亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Three refined and refined harmonic extraction-based Jacobi--Davidson (JD) type methods are proposed, and their thick-restart algorithms with deflation and purgation are developed to compute several generalized singular value decomposition (GSVD) components of a large regular matrix pair. The new methods are called refined cross product-free (RCPF), refined cross product-free harmonic (RCPF-harmonic) and refined inverse-free harmonic (RIF-harmonic) JDGSVD algorithms, abbreviated as RCPF-JDGSVD, RCPF-HJDGSVD and RIF-HJDGSVD, respectively. The new JDGSVD methods are more efficient than the corresponding standard and harmonic extraction-based JDSVD methods proposed previously by the authors, and can overcome the erratic behavior and intrinsic possible non-convergence of the latter ones. Numerical experiments illustrate that RCPF-JDGSVD performs better for the computation of extreme GSVD components while RCPF-HJDGSVD and RIF-HJDGSVD suit better for that of interior GSVD components.

相關內容

Training Memory-based transformers can require a large amount of memory and can be quite inefficient. We propose a novel two-phase training mechanism and a novel regularization technique to improve the training efficiency of memory-based transformers, which are often used for long-range context problems. For our experiments, we consider transformer-XL as our baseline model which is one of memorybased transformer models. We show that our resultant model, Skip Cross-head TransformerXL, outperforms the baseline on character level language modeling task with similar parameters and outperforms the baseline on word level language modelling task with almost 20% fewer parameters. Our proposed methods do not require any additional memory. We also demonstrate the effectiveness of our regularization mechanism on BERT which shows similar performance with reduction in standard deviation of scores of around 30% on multiple GLUE tasks.

We propose Riemannian preconditioned algorithms for the tensor completion problem via tensor ring decomposition. A new Riemannian metric is developed on the product space of the mode-2 unfolding matrices of the core tensors in tensor ring decomposition. The construction of this metric aims to approximate the Hessian of the cost function by its diagonal blocks, paving the way for various Riemannian optimization methods. Specifically, we propose the Riemannian gradient descent and Riemannian conjugate gradient algorithms. We prove that both algorithms globally converge to a stationary point. In the implementation, we exploit the tensor structure and adopt an economical procedure to avoid large matrix formulation and computation in gradients, which significantly reduces the computational cost. Numerical experiments on various synthetic and real-world datasets -- movie ratings, hyperspectral images, and high-dimensional functions -- suggest that the proposed algorithms are more efficient and have better reconstruction ability than other candidates.

Approximate inference methods like the Laplace method, Laplace approximations and variational methods, amongst others, are popular methods when exact inference is not feasible due to the complexity of the model or the abundance of data. In this paper we propose a hybrid approximate method called Low-Rank Variational Bayes correction (VBC), that uses the Laplace method and subsequently a Variational Bayes correction in a lower dimension, to the joint posterior mean. The cost is essentially that of the Laplace method which ensures scalability of the method, in both model complexity and data size. Models with fixed and unknown hyperparameters are considered, for simulated and real examples, for small and large datasets.

We propose a novel and simple spectral method based on the semi-discrete Fourier transforms to discretize the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$. Numerical analysis and experiments are provided to study its performance. Our method has the same symbol $|\xi|^\alpha$ as the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$ at the discrete level, and thus it can be viewed as the exact discrete analogue of the fractional Laplacian. This {\it unique feature} distinguishes our method from other existing methods for the fractional Laplacian. Note that our method is different from the Fourier pseudospectral methods in the literature, which are usually limited to periodic boundary conditions (see Remark \ref{remark0}). Numerical analysis shows that our method can achieve a spectral accuracy. The stability and convergence of our method in solving the fractional Poisson equations were analyzed. Our scheme yields a multilevel Toeplitz stiffness matrix, and thus fast algorithms can be developed for efficient matrix-vector products. The computational complexity is ${\mathcal O}(2N\log(2N))$, and the memory storage is ${\mathcal O}(N)$ with $N$ the total number of points. Extensive numerical experiments verify our analytical results and demonstrate the effectiveness of our method in solving various problems.

This study explores the integration of the hyper-power sequence, a method commonly employed for approximating the Moore-Penrose inverse, to enhance the effectiveness of an existing preconditioner. The approach is closely related to polynomial preconditioning based on Neumann series. We commence with a state-of-the-art matrix-free preconditioner designed for the saddle point system derived from isogeometric structure-preserving discretization of the Stokes equations. Our results demonstrate that incorporating multiple iterations of the hyper-power method enhances the effectiveness of the preconditioner, leading to a substantial reduction in both iteration counts and overall solution time for simulating Stokes flow within a 3D lid-driven cavity. Through a comprehensive analysis, we assess the stability, accuracy, and numerical cost associated with the proposed scheme.

Approximated forms of the RII and RIII redistribution matrices are frequently applied to simplify the numerical solution of the radiative transfer problem for polarized radiation, taking partial frequency redistribution (PRD) effects into account. A widely used approximation for RIII is to consider its expression under the assumption of complete frequency redistribution (CRD) in the observer frame (RIII CRD). The adequacy of this approximation for modeling the intensity profiles has been firmly established. By contrast, its suitability for modeling scattering polarization signals has only been analyzed in a few studies, considering simplified settings. In this work, we aim at quantitatively assessing the impact and the range of validity of the RIII CRD approximation in the modeling of scattering polarization. Methods. We first present an analytic comparison between RIII and RIII CRD. We then compare the results of radiative transfer calculations, out of local thermodynamic equilibrium, performed with RIII and RIII CRD in realistic 1D atmospheric models. We focus on the chromospheric Ca i line at 4227 A and on the photospheric Sr i line at 4607 A.

We investigate how shallow ReLU networks interpolate between known regions. Our analysis shows that empirical risk minimizers converge to a minimum norm interpolant as the number of data points and parameters tends to infinity when a weight decay regularizer is penalized with a coefficient which vanishes at a precise rate as the network width and the number of data points grow. With and without explicit regularization, we numerically study the implicit bias of common optimization algorithms towards known minimum norm interpolants.

The Business Process Modeling Notation (BPMN) is a widely used standard notation for defining intra- and inter-organizational workflows. However, the informal description of the BPMN execution semantics leads to different interpretations of BPMN elements and difficulties in checking behavioral properties. In this article, we propose a formalization of the execution semantics of BPMN that, compared to existing approaches, covers more BPMN elements while also facilitating property checking. Our approach is based on a higher-order transformation from BPMN models to graph transformation systems. To show the capabilities of our approach, we implemented it as an open-source web-based tool.

A classic result by Stockmeyer gives a non-elementary lower bound to the emptiness problem for star-free generalized regular expressions. This result is intimately connected to the satisfiability problem for interval temporal logic, notably for formulas that make use of the so-called chop operator. Such an operator can indeed be interpreted as the inverse of the concatenation operation on regular languages, and this correspondence enables reductions between non-emptiness of star-free generalized regular expressions and satisfiability of formulas of the interval temporal logic of chop under the homogeneity assumption. In this paper, we study the complexity of the satisfiability problem for suitable weakenings of the chop interval temporal logic, that can be equivalently viewed as fragments of Halpern and Shoham interval logic. We first consider the logic $\mathsf{BD}_{hom}$ featuring modalities $B$, for \emph{begins}, corresponding to the prefix relation on pairs of intervals, and $D$, for \emph{during}, corresponding to the infix relation. The homogeneous models of $\mathsf{BD}_{hom}$ naturally correspond to languages defined by restricted forms of regular expressions, that use union, complementation, and the inverses of the prefix and infix relations. Such a fragment has been recently shown to be PSPACE-complete . In this paper, we study the extension $\mathsf{BD}_{hom}$ with the temporal neighborhood modality $A$ (corresponding to the Allen relation \emph{Meets}), and prove that it increases both its expressiveness and complexity. In particular, we show that the resulting logic $\mathsf{BDA}_{hom}$ is EXPSPACE-complete.

We present the new Orthogonal Polynomials Approximation Algorithm (OPAA), a parallelizable algorithm that solves two problems from a functional analytic approach: first, it finds a smooth functional estimate of a density function, whether it is normalized or not; second, the algorithm provides an estimate of the normalizing weight. In the context of Bayesian inference, OPAA provides an estimate of the posterior function as well as the normalizing weight, which is also known as the evidence. A core component of OPAA is a special transform of the square root of the joint distribution into a special functional space of our construct. Through this transform, the evidence is equated with the $L^2$ norm of the transformed function, squared. Hence, the evidence can be estimated by the sum of squares of the transform coefficients. The computations can be parallelized and completed in one pass. To compute the transform coefficients, OPAA proposes a new computational scheme leveraging Gauss--Hermite quadrature in higher dimensions. Not only does it avoid the potential high variance problem associated with random sampling methods, it also enables one to speed up the computation by parallelization, and significantly reduces the complexity by a vector decomposition.

北京阿比特科技有限公司